
Learning Online Network with CAPA

Author’s Tutorial And Manual

January 18, 2025

LON-CAPA Group

Michigan State University

1

CONTENTS 2

Contents

1 Introduction to Authoring in LON-CAPA 6
1.1 About This Manual . 7
1.2 Login as Content Author . 7
1.3 Roles Screen . 8
1.4 Menu Options . 8

1.4.1 Inline Menu . 8
1.4.2 Remote Control . 9

1.5 Resource Types . 10
1.6 Description of Authoring Space . 13
1.7 Searching Existing Resources . 15
1.8 Browsing Existing Resources . 17

2 Help 17
2.1 Online Help . 17
2.2 Where to Find Additional Help . 18
2.3 Requesting New Features and Submitting Suggestions 18

3 HTML Page Overview 19

4 Problem Types in LON-CAPA 19
4.1 Problem Types . 19

4.1.1 Foils . 19
4.2 Radio Response Problems . 19
4.3 Option Response Problems . 19

4.3.1 Option Response Problems with Concept Groups 19
4.3.2 Example: Concept Group . 20
4.3.3 Example: Matching Problem . 20

4.4 String Response Problems . 21
4.5 Numerical Response Problems . 21
4.6 Formula Response Problems . 21
4.7 Math Response Problems . 22
4.8 Custom Response Problems . 22
4.9 Function Plot Response Problems . 22

5 Authoring Content in LON-CAPA 22
5.1 Authoring and Editing Content Pages . 22

5.1.1 Creating Equations . 23
5.1.2 How to Edit Existing Content Pages 25

5.2 Authoring Problems Using LON-CAPA . 25
5.3 General Problem Editing . 27

5.3.1 Authoring Surveys . 27
5.3.2 Adding Picture . 27
5.3.3 Dynamic Plots . 28

CONTENTS 3

5.3.4 Importing Testbanks . 28
5.3.5 Answer Display Overview . 29

6 Authoring Radio, Option, String Response Problems 30
6.1 Authoring Radio Response Problems . 30

6.1.1 Randomization . 33
6.2 Authoring Option Problems . 33
6.3 Simple Option Response: No Concept Groups 34
6.4 Authoring a String Response Problem . 35

7 Authoring Numerical, Formula, Custom Response Questions 36
7.1 Authoring Numerical Response and Formula Response Problems 36
7.2 The Parts of a Numerical Response Problem 37
7.3 Simple Numerical Response Answer . 40
7.4 Simple Script Usage . 40

7.4.1 Variables in Scripts . 41
7.4.2 Variables in the Text Block . 41
7.4.3 Variables in the Answer Block . 42

7.5 Calling Functions . 42
7.5.1 Numerical Response Randomization 43

7.6 Authoring Formula Response Problems . 43
7.7 Dynamic, Randomized Problems: Putting It All Together 45
7.8 Units, Format . 45
7.9 For More Information . 45
7.10 Formula Response . 46

7.10.1 Sample Specifications . 46
7.10.2 Formula Notes . 47
7.10.3 Example Formula Response . 47

7.11 Authoring Math Response Problems . 48
7.12 Custom Response Problems . 50

8 Authoring Dynamically Generated Plots 52
8.1 Specifying Curves to Plot . 53

8.1.1 Plotting Data Points . 55
8.1.2 Plotting Functions . 55
8.1.3 Data and Line Styles . 55

8.2 Plot Labels and Key . 57
8.3 Plot Axes Details . 57
8.4 Color Selection . 60

9 Authoring Function Plot Response Problems 60
9.1 Introduction . 60
9.2 Elements . 61
9.3 Rules . 62

CONTENTS 4

10 Using Libraries 68
10.1 Authoring Library Files . 68

11 Authoring Adaptive/Conditional Hints 71

12 Publishing Your Resources 79
12.1 What is Metadata? . 79
12.2 Publishing a Resource . 80

13 Printing Your Resources 82
13.1 Printing from Authoring Space . 82
13.2 Printing a Subdirectory of Problems . 82
13.3 Tips for Improving Print Output . 83

13.3.1 TeXsize Attribute . 84
13.3.2 TeXwidth Attribute . 84
13.3.3 TeXDropEmptyColumns Attribute 85
13.3.4 Image TeX Attributes . 85
13.3.5 TeX Type Attribute . 86
13.3.6 TeX Itemgroup Width Attribute . 86
13.3.7 TeX Layout Attribute . 87

13.4 Troubleshooting PDF Errors . 87

14 Authoring Maps: Sequences and Pages 88
14.1 Authoring Sequences . 88
14.2 Authoring a Simple .sequence With The Simple Editor 89
14.3 Authoring a Simple .sequence With The Advanced Editor 90
14.4 Adding links and conditions . 92
14.5 Page Maps . 95
14.6 Courses: Top-level Sequence . 95

15 Tags Used in XML Authoring 96
15.1 Response Tags . 96

15.1.1 numericalresponse . 96
15.1.2 imageresponse . 97
15.1.3 optionresponse . 97
15.1.4 radiobuttonresponse . 98
15.1.5 dataresponse . 98
15.1.6 externalresponse . 98
15.1.7 Attributes For All Response Tags . 99

15.2 responseparam and parameter . 99
15.3 Foil Structure Tags . 100
15.4 Hint Tags . 100
15.5 Input Tags . 101
15.6 Output Tags . 101
15.7 Internal Tags . 107

CONTENTS 5

15.8 Scripting Tags . 107
15.9 Structure Tags . 108

16 <script> Tag 109
16.1 Supported Script Functions . 109
16.2 Script Variables . 112
16.3 Table: LON-CAPA Functions . 112
16.4 Table: CAPA vs. LON-CAPA Function Differences 121

17 Bridge Task 126
17.1 Introduction to Bridge Task . 126
17.2 Bridge Task Features . 127
17.3 Authoring Bridge Task . 128
17.4 Bridge Task XML Editing . 128

17.4.1 .Task Headers . 129
17.4.2 .Task Parameter and Variable . 129
17.4.3 .Task Questions and Criteria . 131
17.4.4 .Task Finishing Up . 133

17.5 Bridge Task Edit Mode . 134
17.5.1 Introductions . 135
17.5.2 Questions and Criteria . 135
17.5.3 Parameter and Variable . 138
17.5.4 Edit Mode Finishing Up . 141

17.6 Setting Up a Bridge Task . 141
17.6.1 Bridge Task and Slots . 142
17.6.2 Bridge Task and Conditional Resources 142

17.7 Handing In Bridge Task Files . 143

18 WebDAV access to Authoring Space 144

19 Appendix: Symbols in TeX 156

20 Appendix: Physical Units 157

1 INTRODUCTION TO AUTHORING IN LON-CAPA 6

1 Introduction to Authoring in LON-CAPA

LON-CAPA is a web-based content management system that helps to organize and present
your course website, deliver and manage assignments, and manage student enrollment, as-
sessment, and grading. Typically all author functions will be completed using a web browser
(Firefox, Chrome, Safari, IE or similar). The one exception to this is where your LON-CAPA
domain has been configured to support webDAV access, in which case you may be able to
carry out standard file operations (copy, move, add file etc.) using your computer’s standard
filesystem interface, after you have established access to your authoring space volume.

LON-CAPA has three work spaces: the ROLES menu, the course/community space
where courses are developed from resources, and the authoring space where resources are
composed and published. There are two user manuals for LON-CAPA, a course coordinator
manual and author manual. Also, there are quick reference guides to building a course and
building an exam, available at http://help.loncapa.org . This is the author manual used
to create resources such as problems that can later be added to your course.

Before creating problems, you should have:

• developed learning objectives that you want to evaluate for your course/community

• determined the appropriate question formats and developed your problems for input
into LON-CAPA. Examples for question formats are provided in this manual and also
when authoring a problem.

• developed the directory structure that you plan to use to organize your resources

Overview of the Authoring Process
Graphics, problems, and html pages are all considered resources. Additional resources

include reusable snippets of perl, xml, cascading style sheets, etc. This manual documents
the process used to create and organize the more advanced types of resources.

The authoring process involves these steps:

• create or upload a resource. The resource can combine other uploaded resources such
as graphics, code snippets, or problem sequences

• test and revise your resource

• publish the resource to make it available for integration into a course/community
and/or sharing

• revise your resources after publishing to improve clarity or eliminate bugs

Importance of Planning your Directory Structure
Once a resource has been published, the published version can never be moved or deleted.

Thus, it is important to plan your folder structure. Old resources can be marked obsolete,
and the version in your authoring space deleted, but the published version(s) will remain in
your folders in the locations in which they were originally published.

Understanding xml and the Colorful Editor

1 INTRODUCTION TO AUTHORING IN LON-CAPA 7

Problems are written in xml markup, which can appear complex when you first start
to work with LON-CAPA if you have not done html or other coding. However, each xml
element has a starting and closing argument, just like html. This manual includes a reference
on xml markup used to write problems.

The authoring environment includes a ‘colorful’ web-based editor that can be used for
authoring your first problems. Even experts will often start with the colorful editor to build
a template for a problem. It is possible to switch back and forth between the colorful editor
and xml when composing and testing your problems. Often simple issues are easier to clean
up directly in xml. Also, it is easier to copy/paste xml to build additional problem sections
compared to using the colorful editor.

Scripts
The power of LON-CAPA for problem randomization and computing randomized answers

is realized through writing perl script at the top of a problem. Example scripts are included
in many example problems, and most resource authors publish scripts with the problems, so
many examples are available. Many special functions have been created for use in scripts.
This manual includes a section on writing scripts.

Maxima and R
Two computer algebra systems are interfaced to LON-CAPA, Maxima and R. This pro-

vides for algebra and calculus problems and responses. The R system has strong capabilities
for statistics. Special script functions are provided to call Maxima and R to generate correct
responses for a randomized problem, and also to check student responses.

Comments
Commenting your xml and scripts is important for both you and other users. Commenting

within a loncapa/perl script is denoted with a #. This can be entered anwhere in a line
and the remainder of the line will be ignored when parsing. Problems are coded in xml.
Comments in xml are of the format <!-- comment -->. However, it is important to know
that the XML comments propagate through to the rendered web page viewed by students
while the perl comments within the script are not. Hence, writing solution hints within XML
comments is discouraged for obvious reasons.

1.1 About This Manual

Throughout this manual, keywords and phrases literally present on the computer screen will
be referred to in bold type. Function names and scripts will be shown in a typewriter

font.

1.2 Login as Content Author

To begin using LON-CAPA, you first need to log in to your account on LON-CAPA. Open
your web browser and navigate to your local LON-CAPA URL. You will be presented with
a log in screen.

Fill in the Username and Password boxes with your information. Then press the Login
button. This will take you to your LON-CAPA User Roles menu.

1 INTRODUCTION TO AUTHORING IN LON-CAPA 8

Figure 1: LON-CAPA Log in screen

Note: Your Username and Password will be given to you by your system administrator.
Both are case sensitive, so make sure you type them with the correct case.

1.3 Roles Screen

After logging into LON-CAPA with your username and password, you will see a screen
where you can select your ROLE. LON-CAPA is a roles-based system. You can always use
the same login even though your roles may change. You can be an instructor in one class,
a TA for another class, and an author of resources – all with the same username. Selecting
Roles at the top right of a page, or Switch to another user role on the Main Menu page
will bring you back to the Roles screen.

Two main types of Roles exist in LON-CAPA: Authoring Roles, and Course Roles. Au-
thoring roles are used to develop learning resources. The course role is where resources are
inserted into courses. You may have multiple instances of either type of role. For example,
each separate course has a course role. You may make use of more than one authoring space
role depending on your involvement in collaborative LON-CAPA content creation.

1.4 Menu Options

1.4.1 Inline Menu

Author Inline Menu
The default menu system is the Inline Menu. Links are available near the top of screens.

1 INTRODUCTION TO AUTHORING IN LON-CAPA 9

Figure 2: Author Remote Control

1.4.2 Remote Control

Remote Control
LON-CAPA also offers a Remote Control menu. The Remote Control is a separate pop-

up browser window, and is automatically sized and placed in the upper left of the screen.
To enable and experiment with the Remote Control menu, navigate to: Main Menu > My
Space > Set my user preferences > Content Display Settings > Launch Remote Control. To
exit from the remote, either close the window, or look for the inline menu command to exit
on the upper right of the parent browser window.

Hints for each button appear when hovering over the buttons. Click the words Extended
Display immediately above the remote command display to obtain a list of hints.

The commands available on the remote change depending on whether you are in a author-
ing role or course role, and, in the case of a course role, change depending on the functionality
available to your current role for the screen currently displayed in the main browser window.
Some of the important commands on the Remote Control are:

• ROLES (CHOOSE ROLE) opens the roles screen for you to select which user role
to assume.

• CCAT (COURSE CATALOG) opens search for courses/communities.

• CUSR (CHANGE USER PRIV) add/manage user privileges.

• AUTH (AUTHORING SPACE) displays the authoring space for your account.

• RES (RESOURCE SPACE) allows you to browse the LON-CAPA network direc-
tory. (Searching resource space is usually preferred unless you know where to look for
a particular resource.)

• COM (COMMUNICATION) allows you to access the communication functions in
the system.

1 INTRODUCTION TO AUTHORING IN LON-CAPA 10

• SRCH (SEARCH LIBRARY) brings up a screen that lets you search the LON-
CAPA resources using multiple criteria.

• PREF (PREFERENCES) brings up a screen that allows you to change some pref-
erences.

• EXIT (LOGOUT) will log you out of the LON-CAPA system.

1.5 Resource Types

LON-CAPA provides several types of resources for organizing your course website. Resource
behavior is determined by file extension. Valid extensions are: .xml, .html, .xhtml, .htm,
.xhtm, .problem, .page, .sequence, .rights, .sty, .task, .library, .js, .css, .txt.

• A .css cascading style sheet file can be published for use in multiple courses. Use of
a specific CSS style within a resource can be set using an html tag within a text block
that refers to a class by name, where the class is included in the published css file. You
would specify use of the css file with a <link> tag, and indicate a file dependency with
an allow tag (if the <allow> tag is not specified LON-CAPA should add it at the first
publication step).

<startouttext />

<link rel="stylesheet" index="11"

href="/res/yourdomain/yourusername/yourpath/testcss.css" type="text/css" />

After the Earth and Mars, which other body in our

solar system is thought to be the next most likely site for finding

life?<endouttext />

<allow src="/res/yourdomain/yourusername/yourpath/testcss.css" />

where testcss.css contains:

.Yellow {

color: yellow;

}

It also possible to indicate use of a css file within a course, course-wide, for a specific
folder, or specific resource etc, by setting the parameter: CSS file to link [Part: 0]
(cssfile).

• A .html HTML file, (formerly known as a Content Page), displays course content. It
is a conventional HTML page. These resources use the extension “.html”. By using
the “New File..” dropdown, you can enter a file name with one of the other extensions,
htm, xhtml, xhtm, xml. For more information see the section 3.

Although the extensions: xhtml and xhtm imply that the file should be xhtml compliant
(i.e., be a valid document, according to w3c validation meaning (amongst other things):

1 INTRODUCTION TO AUTHORING IN LON-CAPA 11

all elements closed; attributes case-sensitive; attributes required by certain elements,
certain specials characters need to be included as entities in some attributes etc.),
LON-CAPA does not test whether a document with an xhtml extension is actually
valid xhtml.

Files of type .xml are supported for legacy files, but it is suggested that new files are
one of the html varieties. See also the .library file description for xml.

• A .problem Problem resource represents problems for the students to solve, with
answers stored in the system. These resources are stored in files that must use the
extension “.problem”. Problems are coded in a combination of Perl and xml markup
tags. Most of this manual concerns authoring problems. For an overview see the
section 4.1

• A .page Page is a type of Map which is used to join other resources together into one
HTML page. For example, a page of problems will appears as a problem set. These
resources are stored in files that must use the extension “.page”.

For performance purposes it is best not to include too may resources in a .page (8
would be a good limit; and likely fewer if maxima or R are required for computation).
The Course Editor offers a similar tool called a “Composite page” which resides within
a course rather than in the published repository.

The underlying XML structure, and behavior of a .page file are the same as used for
a “Composite page”, which can be added to a course using the Course Editor. One
difference between the two is that for a .page in Authoring Space, one of the Authoring
Space editors (Simple Edit or Advanced Edit) will be used to modify the contents of
the file, whereas for a Composite Page, the Course Editor is used.

Options for reuse of a course Composite page are: (a) use cloning to copy everything
from the old course to the new; (b) as course coordinator, copy the Composite map
into the Course Editor’s clipboard, change role to course coordintator in a different
course, and past the item into the other course from the Course Editor’s clipboard.

The course manual describes ways to combine resources in folders, which is an alterna-
tive to creating composite pages. A potential advantage of a a composite page is that
the browser’s inbuilt capabilities can be used to print all resources included within
a page with a single “Print” call. That said, LON-CAPA’s own print utility which
creates PDFs allows students to print all resources in a folder to a single PDF, which
lessens the advantange that accrues from use of a composite page. The disadvantage
of use of a published .page is that once a .page is published, reordering or modifying
the contents requires use of the resource assembly tool in authoring space, followed by
republication. Publishing a .page in the repository is suggested if the content does not
need to change.

For more information on .pages, see the section 14.5

• A .js javascript file contains javascript code which might be referenced with HTML in
a textblock in a LON-CAPA problem in a manner similar to a .css file.

1 INTRODUCTION TO AUTHORING IN LON-CAPA 12

• A .library library file contains LON-CAPA XML which can be imported into other
.problem files. Typically a .library file will hold commonly used subroutines, or data
structures (to be called in LON-CAPA perl script blocks). It is included in a problem
in the colorful editor by using the “Import a File” selection in a dropdown list in the
colorful editor.

• A .sequence sequence is a type of Map which is used to link other resources together.
The users of this resource can use links to follow the sequence. Sequences are stored in
files that must use the extension “.sequence”. Sequences can contain other sequences
and pages.

A published sequence contains XML which describes which LON-CAPA resources are
to be grouped together in a folder. If a .sequence file is imported in its entirety then
there is limited control over which specific resources are shown, and in which order.
The “Randomorder” and “Randompick” checkboxes in the Course Editor can be used
to cause the resources to be displayed in a randomorder (randomized for each user),
and to display M of the total N resources in the sequence (again the choice of which M
are shown is randomized for each user). By contrast, if the “Import from Assembled
Map”, a “Select Map” link will allow all resources in the published sequence to be
imported into the current folder, as distinct resources, allowing them to be reordered,
and cut/removed, as preferred using the standard Course Editor tools.

Conditional sequences are published sequence files for which conditions have been
specified for one or more links between resources in the map. These have to be created
using the “Advanced Edit” button when creating a new sequence file in Authoring
Space. These are the types of sequence for which a student’s progress through a series
of resources can be specified. Grading of conditional sequences can be complicated.

• A .rights file is used to specify custom access rights for a published resource. The
access rights to apply to a specific resource are specified on publication (or republi-
cation) of the resource. A .rights file also must be published to be selectable during
resource publication as a “Custom Distribution File” when “Customized right of use
...” is selected from the “Copyright/Distribution” dropdown list. See the “Publishing
A Resource” section 12.2.

• A .sty is a LON-CAPA style file used to apply custom styling to specific tags in a
LON-CAPA problem. The styles defined in the file can be applied to display of all
resources in a course using:

Main Menu->Modify course configuration->Display of resources (checked) + click
“Display” button->Click “Select Style File” link (Default XML style file item) to
launch window to select published .sty file, then click “Save Changes” in main window.

Style files can contain different instructions for different targets (e.g., web or tex). For
example, the following style file would replace the <h1>-tag in all incorporated pages
by the annoying <blink>-tag:

<definetag name = "h1">

1 INTRODUCTION TO AUTHORING IN LON-CAPA 13

<meta></meta>

<render>

<web><blink></web>

<tex>\section{</tex>

<latexsource>\section{</latexsource>

</render>

</definetag>

<definetag name = "/h1">

<meta></meta>

<render>

<web></blink></web>

<tex>}</tex>

<latexsource>}</latexsource>

</render>

</definetag>

When printing, LON-CAPA will use the tex \section as <h1>-rendering.

Note that .css is perhaps a more modern way to achieve formatting.

• A .task task file is a bridge task file. Bridge tasks permit assessment using rubrics.
See the Bridge Task section 17.

1.6 Description of Authoring Space

The Authoring Space is the environment in LON-CAPA where you create and update your
course resources. Creating content involves both authoring the resource during editing, and
then publishing the resource to make it available for use in courses. The figure 3 shows
the top menu. If you move your mouse pointer over your name at the top left of the page,
a dropdown box will be displayed which you can use to select “Preferences” (see Setting
Preferences in the course coordination manual).

The displayed menu also includes:

• Main Menu provide links to additional personal settings.

• Authoring Space returns you to the current authoring space.

• Browse provides a link to published resources.

• People provides a menu to add coauthors.

The gray bar under the menu provides a clickable bread crumb trail. The current authoring
space folder location is displayed near the bottom of the figure 3, and is clickable. The
Recent dropdown box lists recent folder locations for quick navigation.

The upper right menu is not shown here, but includes the following links:

1 INTRODUCTION TO AUTHORING IN LON-CAPA 14

Figure 3: Authoring Space Upper Menu

Figure 4: Example of Author Directory

• Message links to your e-mail box.

• Roles returns you to your roles page.

• Help provides a link to online help for the authoring space. The online help is a
modified version of this manual.

• Logout is a link to close the session.

At the bottom of the page is a directory as shown in the figure 4. On the left edge, icons
help identify the content type. The Actions dropdown provides commands to move, copy,
paste, publish the resource or other content-type-dependent options. The Name column
provides a link to the resource or folder. The Title column provides a link to the meta
data provided to help other users find your resource. The Status column shows whether the
resource is Published, Unpublished, or Obsolete. The vertical bar (pink in the figure)
color denotes the status: Green (published); Pink (unpublished); Gray (obsolete).

In the center of the page are three action menus: Actions for current directory,
Upload a new document, Create a new directory or LON-CAPA document. The
first two menus are intuitive when exploring them. The third menu is shown in the figure 5
and new content types are described later in this manual.

1 INTRODUCTION TO AUTHORING IN LON-CAPA 15

Figure 5: New Content Menu

1.7 Searching Existing Resources

The Basic search page allows you to specify a phrase or expression to search for in the LON-
CAPA resource repository. Search strings can contain quoted phrases, multiple words, ’-’
(meaning “not”), and multiple words or phrases joined with ’or’. For example:

• cat Matches resources about cats.

• cat or dog Matches resources about cats or dogs.

• cat dog Matches resources about both “cat” and “dog”.

• “fluffy cat” -dog Matches resources on the phrase “fluffy cat” that do not contain
“dog”.

There are two checkboxes on the basic search page. The first allows you to limit your
search to the domain of the machine you are currently logged into. The second causes a
thesaurus lookup of your search phrase. Search results will include resources which match
any of the related phrases as well as the original phrase.

The resource metadata fields searched in a basic search are listed below. It is worth noting
that the data searched are self-reported by the resource author. In many cases, authors are
unable to provide relevant values for the fields searched. If you need to search based on
properties other than the following, use the 1.7 Advanced Search link on the basic search
page.

• title

• author

• subject

• notes

1 INTRODUCTION TO AUTHORING IN LON-CAPA 16

• abstract

• keywords

The Advanced Search in LON-CAPA allows you to search specific metadata fields for
matching resources. Resources which match all of the constraints specified will be returned.

For many of the search fields, a “related words” checkbox is available. This causes each
search term or quoted phrase in the search for that field to be matched in our thesaurus.
Resources which matches in the given field any of the search phrases (depending on the logic
in the original search phrase) will be returned.

The following fields can be searched:

• Title

• Author

• Publisher/Owner

• Author Space

• Last Modifying User

• Keywords

• Notes

• Abstract

• Standards

• Mime type

• Lowest grade level

• Highest grade level

• Domain

• Copyright

• Language

• Creation and Modification Dates

Dynamic metadata, computed based on resource usage statistics, can be searched as well.
The following fields can be searched, with a minimum or maximum value being specified:

• Network-wide number of accesses (hits)

• Total number of students who have worked on this problem

2 HELP 17

• Average number of tries till solved

• Degree of difficulty

• Degree of discrimination

Evaluation data may be searched, with a minimum or maximum value being specified:

• Material presented in clear way

• Material covered with sufficient depth

• Material is helpful

• Material appears to be correct

• Resource is technically correct

1.8 Browsing Existing Resources

Click Browse published resources on the Main Menu to browse the LON-CAPA
resource pool. This is the same interface used when importing a document into your course
documents except that you only have permissions to view the resources, not select them
for importing. Note that at the top of the Resource Space Screen there are some options.
For example, selecting “Title” will display the titles from the metadata from each problem.
Selecting “All versions” will show all versions of the resource which are saved whenever the
resource was republished.

The resources are organized by the domain, then the username. The Recent dropdown
box provides a shortcut to recent browsing history.

2 Help

2.1 Online Help

On many LON-CAPA pages, you will see one or more small blue circles (each with a white

question mark inside) . These blue circles are links to relevant help documentation. Each
LON-CAPA help page also includes a search box, in which you can enter keyword(s) to
search all LON-CAPA help documents.

Also, a Help link is available in the upper right. This help page provides links to the
course manual (from within a course) or the author manual (from the authoring space) and
provides both an online version and pdf version. You may wish to save a pdf version of
each so that you can reference the help for one role while working in the other role. The
help page also provides a link to request help from the LON-CAPA help desk and a link
to report bugs (Course Coordinators and Authors only). In some cases you may also see a
green square containing a white question mark alongside the text: “FAQ”. This provides a
link to relevant help item in the user-contributed documentation found in the LON-CAPA
FAQ-o-matic system.

2 HELP 18

2.2 Where to Find Additional Help

You can find additional help about LON-CAPA and download copies of this manual at
http://help.lon-capa.org . For additional help, use the Help link on the upper right of
the screen to find a link to contact the helpdesk, or search the loncapa listservs at
http://mail.lon-capa.org/mailman/swish.cgi . You may wish to join the listserv loncapa-
users at http://mail.lon-capa.org . The family of users is very helpful in assisting users
with questions posted to the listserv.

2.3 Requesting New Features and Submitting Suggestions

We Welcome Your Ideas and Contributions...
LON-CAPA is open-source software where everyone is free to contribute to the devel-

opment. If you think of an enhancement, or find a bug in the system, please report it.
LON-CAPA uses Bugzilla (http://www.bugzilla.org/) to report and track bugs and en-
hancement requests. All reported bugs and enhancement requests posted on Bugzilla are
examined by the core LON-CAPA team. Having the request in Bugzilla helps keep track of
both bugs and feature requests, and is the preferred method of reporting bugs and requesting
enhancements. You’ll be able to see how the developers respond to the bug, which developer
is currently responsible for it, and what the developer’s intentions are.

You must have an account to use Bugzilla. You can create an account at
http://bugs.lon-capa.org by clicking on the link Open a New Bugzilla Account.
You will be directed to send an e-mail to the LON-CAPA Helpdesk to request creation of
a Bugzilla account. Once you have an open account, please search existing cases for related
content before submitting a new case. Select “LON-CAPA” in the “Product” category when
searching. Hold the Ctrl key while clicking multiple items. The “Component”, “Version”,
and “Target” can be left undesignated. If you find a related bug, you can add comments
instead of reporting a new bug. If you find a bug that you are interested in following, you
can add your e-mail to the “Add cc:” box and click “Commit”.

You can report a bug or request an enhancement as follows:

1. Open the web page http://bugs.lon-capa.org

2. Click on the Enter a new bug report link.

3. Select the (LON-CAPA) product link.

4. At the login screen, enter your e-mail address and password.

5. Click the [Login] button.

6. Select the LON-CAPA Version, Component, Platform and Operating System (as much
as known).

7. Enter a summary in the “Summary” text box.

8. Enter a description in the “Description” text box.

3 HTML PAGE OVERVIEW 19

9. Click the [Commit] button.

A developer will follow up with you.

3 HTML Page Overview

HTML files are HTML documents that display the course information you are presenting.
They have been previously called Content Pages.

You may create HTML files and then upload them, or you may create HTML files within
the Authoring Space.

4 Problem Types in LON-CAPA

4.1 Problem Types

In this manual we will cover basic types of problems: Radio Response, Option Response,
String Response, Numerical Response, Formula Response, and Math Response. You will
need to identify which types of problem you want to use and create appropriate questions
for your course.

4.1.1 Foils

In the LON-CAPA system, a Foil is the statement next to the drop-down box or radio
button in a Radio Response or Option Response problem. Foils do not need to be text; they
can be images or other resources.

4.2 Radio Response Problems

Radio Response problems present a list of foils with radio buttons. The student can select
one of these statements by clicking the appropriate radio button.

4.3 Option Response Problems

Option Response problems present foils to the student with drop-down boxes. The student
can select the matching choice for the foils from a list of choices. Optionally, the foils may be
bundled into Concept Groups and the system will select one foil from each group to display
to the student.

By default, the list of options is presented in front of the foils. Using the optional
<drawoptionlist /> tag, the list of options can be embedded into the foil.

4.3.1 Option Response Problems with Concept Groups

Each Option Response problem can have three parts:

1. The Concept Groups

4 PROBLEM TYPES IN LON-CAPA 20

Figure 6: Option Response Problem

2. The options for the students to select, by default “True” and “False”

3. The hint for the student

Each Concept Group has some number of foils representing questions which are conceptu-
ally related. Option Response Problem Templates are available for 4 and 8 Concept Groups.
When the Option Response problem is presented to a student, the LON-CAPA system will
randomly select one foil from each Concept Group and present it to the student. In order
to receive credit for the problem, the student must select the corresponding option from the
drop-down box for each given foil.

4.3.2 Example: Concept Group

A Concept Group may contain the following True/False questions:

• “Mark Twain” is the pen name of Samuel Clemens.

• Mark Twain wrote “The Call of the Wild”.

• Mark Twain wrote “Huckleberry Finn”.

• Mark Twain spent most of his life in the Congo.

For each foil, the author marks it true or false. When the student logs on and attempts
to answer this question, the student will see only one of the four choices for that Concept
Group. They then go on to do the remaining three to seven Concept Groups in this question
before submitting their answer.

4.3.3 Example: Matching Problem

Option Response problems can be used as matching problems.
For example, you might want to ask the student to match musical compositions with

their composers. You could create an Option Response problem with 4 Concept Groups,
and place the following four foil groups each in its own concept group:

4 PROBLEM TYPES IN LON-CAPA 21

• Claire de Lune, Ballade (Debussy)

• The Pastoral Symphony, The Ninth Symphony (Beethoven)

• Sleeping Beauty Suite, The Dance of the Sugar Plum Fairies (Tchaikovsky)

• Slavonic Dances, New World Symphony (Dvorak)

You could then add the following options to the option list:

• Debussy

• Beethoven

• Schubert

• Tchaikovsky

• Dvorak

The same answers can be used more than once, or not at all, as you see fit. It is conventional
to place such a warning in the Text Block describing the problem to the students.

4.4 String Response Problems

String Response problems allow the student to submit a string of characters for the answer.
Examples of String Response questions are vocabulary tests, short answers and chemical
formulas.

Note that it is easy to abuse String Response problems. For instance, consider the
question “Who wrote ‘Huckleberry Finn’?” If you tell the system the answer is “Mark
Twain”, and a student answers “Twain”, the system will mark it wrong. If they answer
“Samuel Clemens”, then the student will definitely get it wrong. There is some room for
flexibility in the string processing, but it can be difficult to get it all correct. Before you use
a String Response problem, be sure you can easily characterize correct answers.

4.5 Numerical Response Problems

Numerical Response problems are answered by entering a number and (optionally) a unit,
such as 2.5 m/sˆ2. Tolerance and required significant digits can be specified as well.

4.6 Formula Response Problems

Formula Response problems ask the student to type in a formula as an answer. If the
answer is 2x2 + 4, the student is allowed to type “2*x*x+4”, “x*x + x*x + 4”, “2*xˆ2 +
14 - 10”, or any other equivalent expression. Formula Response problems have many of the
same characteristics of Numerical Response problems, including the ability to run scripts,
dynamically generate answers, etc.

5 AUTHORING CONTENT IN LON-CAPA 22

4.7 Math Response Problems

Math Response is a way to have a problem graded based on an algorithm that is executed
inside of a computer algebra system based on an algorithm written by the problem author.
It is extremely powerful, as it tests answers for conditions rather than agreement with a
particular correct answer. An unfortunate byproduct, however, is that it cannot be analyzed
by several of the LON-CAPA statistics tools.

4.8 Custom Response Problems

Custom Response is a way to have a problem graded based on an algorithm constructed in
the perl script. The use of this response type is generally discouraged, since the responses
will not be analyzable by the LON-CAPA statistics tools.

4.9 Function Plot Response Problems

A Function Plot Response problem requires that the student create a plot that matches
specified criteria. Examples can be functions that have certain slopes, curvature, maxima
or minima at specified independent coordinate values. The students create their answer by
dragging the curves and adjusting the slopes.

5 Authoring Content in LON-CAPA

LON-CAPA internally recognizes the types of resources by the filename extension. Within
the authoring space, there are two methods to create a new resource:

• If you are using Inline Menus, you may use the dropdrown menu on the right of the
authoring screen to indicate the type of resource you want to create as shown in the
figure 5. The filename extension will be specified when you select the resource type.
This method is best for new authors.

• Or, you may type the full url of the new resource in URL bar of your browser. You
must use a valid file extension. LON-CAPA will recognize the new resource type by
the filename extension and present you the appropriate menus to create your resource.
This method is appropriate for advanced authoring.

5.1 Authoring and Editing Content Pages

Many users use stand-alone editing programs such as Dreamweaver to create HTML files.
To upload HTML files generated with such tools, you can use the Browse... button in
the Authoring Space, locate your HTML file, and use the Upload File button to upload
a HTML file in LON-CAPA. Remember to upload any local graphics your generated web
pages may have referenced using similar procedures. The links to graphics in your html page
must match the relative locations for the uploaded files.

5 AUTHORING CONTENT IN LON-CAPA 23

To create a new html page using the Inline Menus, browse to the desired folder using the
folder navigation links in the lower part of the authoring screen. Then select ‘HTML file’
from the new content dropdown menu on the right of the authoring space page as shown in
the dropdown menu of the figure 5.

When you edit a web page, you will be presented with a plain text editor as shown in
the figure 7. Clicking the link for the Rich Formatting displays the HTML WYSIWYG
editor (CKEditor) with buttons to help you create html entities with correct tags as shown
in the figure 8. If the rich layout is not as you expect, look for the button to view/edit the
source, and then manually make adjustments to the html tags. Note the three buttons in
the CKEditor toolbar (ringed in the figure 8), which can be used to (a) include an image,
(b) add a chemical equation, or (c) add a math expression or equation. Buttons are also
provided to create/edit links. (See: Creating Equations section 5.1.1 for information about
creating and editing math equations.)

If you use the Image button to include graphics you will either the location of the file in
the URL box. The location can either be relative to the current file, or can be an absolute
URL for the location of a published file (i.e., /res/domain/username/path/filename). When
you are done editing the HTML file, you will need to upload the graphics file, if it does not
already exist and publish it to the content repository.

Note the convenient help links for Greek Symbols, Other Symbols, Output Tags,
and Languages immediately above the editor in the figures. Also note the link to check
spelling below the editor.

The URL of the page in the root of your Authoring space would look something like
http://(your library server)/priv/domain/username/new resource.html .

5.1.1 Creating Equations

LON-CAPA renders math using LaTeX. LaTeX equations can be entered directly in the
source with the text editor, within <m>$ $</m> tags. When the browser has support for
Java applets, the DragMath editor can also be used to generate LaTeX. To start DragMath
in the text editor, insert the cursor at the desired equation location and click on the ‘Edit
Math’ button. At the bottom of the DragMath pop-up is a ‘Render LaTeX’ button that will
insert the DragMath expression as LaTeX within <m>$ $</m> tags in the text.

The DragMath editor may not offer the template that you need, or the expression may
not appear as you expect. The most powerful method of entering math or touching up
DragMath output is to learn about the LaTeX syntax. An Internet search for “LaTeX math
quick reference” will result in many resources.

To create equations in CKEditor (the WYSIWYG editor launched with the “Rich format-
ting” link), you can use the Σ button. It requires knowing the LaTeX syntax, but provides
a real-time preview. Equations can be edited with a double-click on the rendering.

Within the <m> tag, additional tags control the display of LaTeX math. The $ open and
closing syntax will create an inline equation. To create an equation in a separate paragraph,
use double signs, $$. Alternative notations are also accepted, \(opening with \) closing can
be used for an inline equation, and \[opening with \] closing results in a separate paragraph.
The $ and $$ methods are recommended as “LaTeX robust” and the \(and \[methods are
considered “LaTeX fragile.” The robust methods should be used if the fragile methods result

5 AUTHORING CONTENT IN LON-CAPA 24

Figure 7: Plain Text HTML Editor

Figure 8: Rich Text HTML Editor

5 AUTHORING CONTENT IN LON-CAPA 25

in unexpected behavior.
Some simple sytax from common LaTeX math:

• \frac{numerator}{denominator} results in numerator
denominator

• ^ superscript, e.g. x^2 results in x2

• subscript, e.g. x^2 i results in x2
i

• use { and } as delimiters, e.g. x {upper} for xupper

See m tag in Output Tags 15.6 for more information.

5.1.2 How to Edit Existing Content Pages

You may edit any Content Pages that have been created.
To edit Content Pages:

1. Navigate to the folder with the HTML file.

2. Click on the link for the name of the HTML file to edit.

5.2 Authoring Problems Using LON-CAPA

When you create a new problem as in the figure 5, LON-CAPA will offer to you example
templates that are highly recommended for beginners. A subset of the problem templates
is illustrated by the multiple choice selections shown in the figure 9. Click the Example
link next to menu item to see an example problem. Once you make a selection, you can
use the template and edit the content to convert the template into your own problem. By
default, the template problem will be displayed in the problem testing mode with a header
shown in the figure 10. The problem statement (not shown here) appears below the testing
menu. The menu will be described later. Click the Edit button in the lower left to open the
colorful editor. The EditXML button is for advanced users. An additional editor (named
Daxe) may be available in your Authoring Space. Daxe uses an XML schema, configuration
file and user interface code for the markup language used by LON-CAPA documents.

The menu for the colorful editor is shown in the figure 11. The button functions are:

• Discard Edits and View - return to the testing menu without saving

• EditXML - switch to the XML Editor

• Edit with Daxe - switch to the Daxe Editor

• Undo - forget last edits

• Save and Edit - Save and continue editing in the colorful editor

• Save and View - Save and return to the testing menu

5 AUTHORING CONTENT IN LON-CAPA 26

Figure 9: Multiple Choice Problem Menu

Figure 10: Problem Testing Menu

An example of the colorful editor is shown in Figure 13. Each box in the colorful editor has
a purpose, and the boxes are colored by their purpose. Note that the current editor includes
more space between the blocks than shown in many of the figures in this manual. Also, the
newer editor has an ‘Insert’ dropdown box between blocks so that you can insert content
easily.

While several problem types are covered in this manual, in LON-CAPA all problems
involve similar XML elements. The menu for the XML editor is shown in the figure 12. Note
that the editor includes help links at the top. The Edit button starts the colorful editor.
The Edit Math button adds latex math. The other buttons are the same as the colorful
editor buttons. If you find yourself uncertain about the name or function of an LON-CAPA
xml tag, consult the reference in section 15.

The problem editor gives you a testing area where you can try your problems out, with
several different randomizations by varying the Random Seed. If you answer a problem
correctly and can no longer enter new answers, you can get the answer field back by hitting
the Reset Submissions button.

Problems also may appear differently after the answer date, or on an exam. The editor

5 AUTHORING CONTENT IN LON-CAPA 27

Figure 11: Colorful Problem Editor Menu

Figure 12: XML Problem Editor Menu

provides dropdown selectors to view problems with such conditions set.

5.3 General Problem Editing

The following capabilities are available in all problem types:

5.3.1 Authoring Surveys

Surveys are created by authoring a conventional problem, such as a Radio button or Option
problem. During the authoring process, you will need to select one of the foils as “correct”.
Which foil is set to “correct” will not matter, however; that setting will be ignored when
you implement the survey.

Within the course environment, to add a survey to the course, insert the “problem”,
and then set the parameter for “Question Type” to “Survey”, “Survey with Credit”, or
“Anonymous Survey”. To evaluate the survey, you will perform analysis using Reports ->
Survey Results or Statistics and Analysis -> Detailed Problem Analysis.

The results examined with either tool will be displayed sorted by foil name, so take
some care while authoring to name the foils. For example “Foil10” appears before “Foil2”
alphabetically, so your survey may easier to interpret if you insert a zero before single digits,
such as “Foil02” and “Foil10” which will sort as expected.

5.3.2 Adding Picture

To add a picture to a problem, the picture must first be uploaded to your authoring space,
then published. Then, in the text area of your problem, add the following:

where DOMAIN is the domain the picture is in, AUTHOR is the person who published
the picture, and the rest is the standard path to the picture.

It is also possible for advanced users to use a script variable in the place of the picture
URL, like this:

5 AUTHORING CONTENT IN LON-CAPA 28

and use the string variable $picture in the script of the problem to select from several
possible pictures. If you do this, you will need to Edit XML for the problem and add the
various graphics used in the problem to the <allow> tags on the bottom.

When print resources with pictures, LON-CAPA will automatically convert graphics in
EPS files. (EPS is a graphics format designed for printing.)

The automatic conversion of a web graphic to an EPS file will sometimes look blocky,
because paper has a much higher resolution then the web. If you would like to provide LON-
CAPA with an EPS file to use while printing for a given graphic file, upload your EPS file
into your authoring space with the same name as the .gif, .jpg, or other web graphic, except
ending with the extension “.eps”. When you publish the file, LON-CAPA will automatically
use it in place of the web image file when printing.

For instance, if you have a graphics file my.image.gif, you can upload an EPS file named
my.image.eps.

5.3.3 Dynamic Plots

Dynamic Plots can be generated from calculations based on random numbers. The student
can be asked to respond to the plot. Another option is to use student input to display a
graphical result to students based on an input that they provide.

5.3.4 Importing Testbanks

The following requirements must be met to ensure that you will succeed in building LON-
CAPA problem files from a file containing testbank questions.

1. The uploaded testbank file containing questions and answers must be either plain text,
rich text format (RTF), or a web page (i.e., HTML format). Testbank files in RTF
and HTML formats may contain images. If conversion to LON-CAPA fails for RTF
or HTML formats, re-saving the testbank file from the application originally used to
generate it in plain text, and re-uploading the file to LON-CAPA may solve the problem
(albeit with the loss of formatting information).

2. All questions must occur before any of the answers. Each question should begin on a
new line starting with a number followed immediately by a space, a period, or enclosed
in parentheses, i.e., 1 , 1., (1), 1), or (1 . If you use a word processor to create the
testbank questions you must disable auto-formatting of lists, otherwise the formatting
will not conform to the new line requirement.

3. One or more correct answers need to be provided for all questions (although the answer
text may be blank for essay questions). Each answer should begin on a new line using
the same numbering scheme as used for the questions, and all answers must occur after
all the questions.

4. Multiple choice and multiple answer correct questions should consist of (i) the question
number followed by (ii) a question stem beginning on the same line and (iii) two or
more foils, with each foil beginning on a new line and prefixed by a unique letter, or

5 AUTHORING CONTENT IN LON-CAPA 29

Roman numeral, listed in alphabetic or numeric order, beginning at a (alphabetic) or
i (Roman numeral), followed by a period, or enclosed in parentheses, i.e., a., (a), i., or
(i)

5. If fill-in-the-blank or multiple answer questions have more than one correct answer,
each answer should appear in a comma-, tab-, space-, or new line-delimited list. For
a ranking/ordering question, the ”answer” should contain the foil identifiers correctly
ordered in a similarly delimited list. If two or more foils have the same ranking,
they should occur together, with an equals sign separating equally ranked foils [e.g.,
(b),(e)=(a),(d),(c)]

5.3.5 Answer Display Overview

Several xml tags are available to provide student guidance during problem display and also
after the answer date. These include <notsolved>, <preduedate>, which are useful when
the students are working a problem, and <solved>, <postanswerdate>, which are helpful
in providing feedback. The content in the xml tag <postanswerdate> is suppressed until
after the answer date.

Answers are typically not displayed to the student when they submit an answer to a
problem, unless their answer is correct. When the problem is assigned in a course, a param-
eter for the ‘answer date’ must be set such that students will see answers displayed when
they revisit the problem after that date. The answer date is distinct from the due date which
can also be set when a problem is assigned.

Suppose you want the answer displayed as soon as the student finishes the problem rather
than waiting until the answer date. For example, this may occur in a multipoint problem
where you want the students to see the correct answer for one part before proceding to the
next part. If you would like the computer answer to be displayed after the student answer is
correct, or the maximum number of tries has been reached, this can be achieved by setting the
parameter problemstatus = answer. Using the colorful editor, the parameter can be inserted
WITHIN the problem part, but BEFORE the response tag (e.g. numericalresponse). For
example:

<part id="01">

<parameter name="problemstatus" id="11" type="string_problemstatus"

default="answer" description="Show Problem Status" />

<numericalresponse answer="$c" id="01a">

<!-- using no tolerance since exact integer is expected for answer -->

<textline readonly="no" spellcheck="none" />

</numericalresponse>

</part>

The options for the problemstatus are: “yes” - shows correct or incorrect only; “answer”
- shows computer answer as described above; “no” - don’t show correct/incorrect feedback;
“no feedback ever”- supresses all feedback.

If you want to provide additional explanation in addition to the answer as soon as the
maximum tries allowed for the part have been reached, include a conditional block in the

6 AUTHORING RADIO, OPTION, STRING RESPONSE PROBLEMS 30

problem part, and set the condition for the part to evaluate to true when the problem is
either correct, no tries remain, or it is post-answer date.

To achieve this behavior, add a call to the LON-CAPA function &check status(‘partid’)
for each part to the script block, and set a scalar to the value returned for each part, then
use that scalar in the conditional block, e.g.,

<script type="loncapa/perl">

for part: a

$status_a = &check_status(’a’);

other computations

</script>

<part id="a">

<block condition="$status_a">

<startouttext />

Some explanation text about the answer, $answer

<endouttext />

</block>

</part>

6 Authoring Radio, Option, String Response Prob-

lems

6.1 Authoring Radio Response Problems

To create a Radio Response problem, create a new resource as described in section 5. This
is a “problem” resource so the URL must end in “.problem”. You should see a screen as in
figure 5. You will need to specify the question text and foil statements.

1. Select a radio response template from the menu. You will be presented a form such as
in the figure 13.

2. In the Text Block at the top of the problem, remove the sample text and type the
question for your problem. Ex: “What is two plus two?”

3. Locate the Response: One of N statements element. In the Max Number of
Shown Foils text box, place the number of foils you wish to display to the student.

4. Locate Foil 1. Remove the text that is in the text box and put the correct answer for
the problem in the Text Block. For example, “Four.” Make sure this is set to true
in the Correct Option field.

5. Below it, you will see Foil 2. Remove the text in the text box and put an incorrect
answer for the problem. Ex: “Purple.” Make sure this is set to false in the Correct
Option field.

6 AUTHORING RADIO, OPTION, STRING RESPONSE PROBLEMS 31

Figure 13: Radio Response Creation Form

6 AUTHORING RADIO, OPTION, STRING RESPONSE PROBLEMS 32

8.

Figure 14: Hint Element

6. Repeat the previous step until you’ve filled in all of the other incorrect answers you
wish to offer the students.

7. Once you’ve filled in all of the incorrect answers, delete any extra foils or change the
Correct Options on the other foils to Unused.

9. Scroll down to the Hint element. See the figure 14 Type some text that will help
students when they answer incorrectly. You may delete the hint by selecting Yes from
the Delete drop-down box.

10. Click the Submit Changes button located at the top of the frame. If you do not do
this, your changes will not be saved.

The Correct Option drop down box controls whether or not a given answer will be ac-
cepted as a correct answer. If it is set to true, that answer will be considered a correct
answer. Any number of foils can be marked true, but only one will be shown to any given
student. If it is set to false, it will be considered an incorrect answer. If it is set to Unused,
the system will not use that foil.

Example code for a radiobuttonresponse:

<radiobuttonresponse randomize="yes">

<foilgroup>

<foil location="random" value="true" name="right1">

<startouttext />This is the right answer.<endouttext />

</foil>

<foil location="random" value="false" name="wrong1">

<startouttext />This is the first wrong answer.<endouttext />

</foil>

<foil location="random" value="false" name="wrong2">

<startouttext />This is the second wrong answer.<endouttext />

</foil>

6 AUTHORING RADIO, OPTION, STRING RESPONSE PROBLEMS 33

</foilgroup>

</radiobuttonresponse>

See section 15.1.4 for more information on <radiobuttonresponse>.

6.1.1 Randomization

LON-CAPA will randomize the choices presented to each student and the order they are
presented. If you wish to present a random set of incorrect answers, create more foils than
you wish to display, and then set the Maximum Number of Shown Foils to a value less
than the number of foils created. If you wish to present each student the same choices, make
sure the Maximum Number of Shown Foils box contains a number greater or equal to
the number of foils that you created, which will force them to all be displayed.

6.2 Authoring Option Problems

To create an Option Response problem, create a new resource as described in section 5. This
is a “problem” resource so the URL must end in “.problem”. You should see a screen as in
figure “Option Response Editor”.

1. In the drop-down option box as seen in figure 5, select Option Response Problem
with N Concept Groups, where N is the number of Concept Groups you wish the
problem to have, and click the New Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
the Option Response page open up.

3. Replace the text in the Text Block with text that explains the conditions for your
problem.

4. Locate the Max Number of Shown Foils element and type a number from 1 to 8
to display that number of questions. You cannot display more than one foil from each
concept group, so this option will only reduce the number of foils displayed, if it is less
than the number of concept groups in your Option Response problem.

5. Now you must define the options the students can select. For each option you wish to
add to the Option Response question, type the option into the Add new Option box
in the Select Options section, then hit the Save Changes button. If you do not hit
the Save Changes button, your option will not be selectable below. (You can delete
unwanted options in the last step.)

6. Now, you need to define the question foils. Look for the foil with the name “One”.
Type the question into the text box and select the correct option for that question
from the Correct Option drop-down menu. Click Submit Changes to save this
question foil. Repeat this step for all remaining foils.

6 AUTHORING RADIO, OPTION, STRING RESPONSE PROBLEMS 34

Figure 15: Option Response Editor

7. Locate the foils that are not being used. In their Delete menus, set the value to
Yes. Once you’ve set the Delete menu value correctly for all the foils, click the Save
Changes button.

8. In the Hint area, provide a helpful hint for users who get the problem incorrect, and
click the Save Changes button.

9. Make sure all the options you want to delete are not used for any of your foils. If a
deleted option is used in a foil, it will appear in a text box in the Correct Option area
for that foil. To make the drop-down box reappear, type an option already defined in
the Select Options field, and hit Submit Changes. A drop-down box will reappear.
To delete the irrelevant options from the Option Response question, select that option
from the Delete an Option drop down, and hit the Save Changes button. Do this
for each option you wish to remove.

6.3 Simple Option Response: No Concept Groups

If you select Simple Option Response from the drop-down box, you will get a template
that will allow you to enter up to eight foils with no grouping. The system will randomly
mix these foils when presenting them to the student. You can have more foils than the Max
Num of Shown Foils so that each student will not have the identical foils.

6 AUTHORING RADIO, OPTION, STRING RESPONSE PROBLEMS 35

Figure 16: String Response Editor

6.4 Authoring a String Response Problem

To create a String Response problem, create a new resource (described in 5.2. This is a
“problem” resource so the URL must end in “.problem”.

1. In the drop-down option box as seen in the figure 5, select String Response Problem,
and click the New Problem button.

2. Click the Edit button above the sample problem to enter edit mode. You should see
the String Response editor page open up, which should look something like what you
see in the figure 16.

3. Clear the text from the Text Block at the top of the problem, and type in your
problem.

4. In the Answer Box, type the correct answer.

5. Select the answer condition from the drop-down. There are three cases to choose from:

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 36

(a) cs: This means “Case Sensitive”. For example, this is useful in chemistry, where
HO and Ho are completely different answers. The student must match the case
of the answer.

(b) ci: This means “Case Insensitive”. The system does not use the case of the
letters to determine the correctness of the answer. If the correct answer is “car”,
the system will accept “car”, “CAR”, “Car”, “caR”, etc.

(c) mc: This means “Multiple Choice”. The student’s answers must contain the
same letters as the question author’s, but order is unimportant. This is usually
used to give a multiple choice question in the question’s Text Block, which may
have several correct parts. If the author sets the correct answer as “bcg”, the
system will accept “bcg”, “cbg”, “gcb”, etc., but not “bc” or “abcg”.

It is conventional to inform the students if the problem is case sensitive, or that the
order of the answers doesn’t matter.

6. Optionally, locate the Single Line Text Entry Area block and set a length in the
Size box. This will only affect the size of the box on the screen; if you set the box size
to 2, the student can still enter 3 or more letters in their answer.

7. Scroll down to the Hint element, and type some text that will help students when
they answer incorrectly, or delete the hint by setting the Delete field to Yes.

8. Click the Submit Changes button.

7 Authoring Numerical, Formula, Custom Response

Questions

7.1 Authoring Numerical Response and Formula Response Prob-
lems

Numerical Response problems are answered by entering a number and an optional unit. For
instance, a numerical response problem might have an answer of 2m/s2. Formula Response
problems are answered by entering a mathematical formula. For instance, a formula response
problem might have an answer of x2 +11. The answer may be in any equivalent format. For
instance, for x2 + 11, the system will also accept x ∗ x+ 11 or x2 + 21− 10.

Numerical Response problems are very powerful. In fact, they are so powerful it would
be impossible to fully explain what is possible in a simple document. This chapter will
focus on getting you started with Numerical Response problems and show you some of the
possibilities, with no prerequisite knowledge necessary. The more you learn, the more you
will find you can do.

If you like, you can follow this chapter as its own tutorial. Create a Numerical Response
problem using the instructions in the “Authoring Content in LON-CAPA” section 5, ending
your resource name with “.problem”, and create a new Simple Numerical Response
problem.

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 37

7.2 The Parts of a Numerical Response Problem

A Numerical Response problem has seven major parts by default:

1. The Script is the heart of advanced Numerical Response problems. It can be used to
decide some of the parameters of the problem, compute the answer to the problem,
and do just about anything else you can imagine. The Script language is Perl. You
do not need to know Perl to use the Script block because we will be stepping through
some advanced examples in this chapter, but knowing Perl can help.

2. Like other problem types, the Text Block is used to display the problem the student
will see. In addition, you can place variables in the Text Block based on computations
done in the Script.

3. The Answer is the answer the system is looking for. The answer can use variables
calculated/defined in the problem’s Script block, allowing the answer to be determined
dynamically (including randomization).

4. A tolerance parameter determines how closely the system will require the student’s
answer to be in order to count it correct. The tolerance will default to zero if it is not
defined. The tolerance parameter should always be defined for a numerical problem
unless you are certain only integer answers are generated from your script and you
want students to reply with exactly that integer.

If the computer answer is a floating point number, the tolerance should not be zero.
Computers can only approximate computations involving real numbers. For instance,
a computer’s [decimal] answer to the simple problem 1

3
is “0.33333333333333331”. It

should be an infinite series of 3’s, and there certainly shouldn’t be a “1” in the an-
swer, but no computer can represent an infinitely long, infinitely detailed real number.
Therefore, for any problem where the answer is not an integer, you need to allow a
tolerance factor, or the students will find it nearly impossible to exactly match the
computer’s idea of the answer. You may find the default tolerance too large for some
problems, so adjust as appropriate.

There are three kinds of tolerance. For some answer A and a tolerance T ,

(a) an Absolute tolerance will take anything in the range A ± T . So if A = 10
and T = 2, then anything between 8 and 12 is acceptable. Any number in the
tolerance field without a % symbol is an absolute tolerance.

(b) a Relative tolerance will take anything in the rangeA±aT , where T is interpreted
as a percentage/100. Any number in the tolerance field followed by a % symbol
is a relative tolerance. For example, a = 10 and t = 10% will accept anything
between 9 and 11.

(c) a tolerance that is a calculated variable (identified by $ sign as the first character).
For example, if an answer is $X,and for a student possible values range from−$X1
to +$X1, you could choose T = $tolerance = $2X1/100; acceptable answers
would then be from $X − $tolerance to $X + $tolerance. (This is especially
useful when answers close to zero are possible for some students)

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 38

Figure 17: Numerical Response editor

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 39

Some care is necessary when setting the display format of the computer answer. Before
testing the tolerance, LON-CAPA converts the computer answer, as generated in the
script block, according to the format attribute in the numericalresponse tag.

Next, the formatted comptuer answer is ”graded” relative to the significant figures pa-
rameter, if it is set (see section 5. If that test was passed, then a numerical comparison
of the Computer’s answer is made with the range of values:

($computerAnswer - $tolerance) < $formattedcomputerAnswer < ($computerAnswer
+ $tolerance)

If the $formattedcomputerAnswer satisfies the permitted range, then ”correct” is re-
turned for the computer answer. It is good idea to test multiple randomizations to
make sure that your tolerance is compatible with the display format.

5. A significant figures specification is an optional setting that tells LON-CAPA how
many significant figures there are required for the answer, as either a single number,
e.g. 3, or a range of acceptable values, expressed as min,max. The significant figures
field can be omitted if you do not want to constrain the number of significant digits in
the student answers.

The system will check to ensure that the student’s answer contains the required sig-
nificant digits, useful in many scientific calculations. For example, if the computer
answer is “1.3”, and the problem requests three significant digits, specified by (en-
tered without quotes) “3”, the system will require the students to type “1.30”, even
though numerically, “1.3” and “1.30” are the same. A significant figure specification
of (entered without quotes) “3,4” means both “1.30” and “1.300” are acceptable.

Authors should be clear in the problem statements to tell students the required number
or range of significant figures. If the student response does not contain the correct
number of significant digits, the LON-CAPA response will tell students to increase or
decrease the digits in their response, but it will not tell them how many digits to use.
These responses do not use up the number of trials, but such responses are frustrating
for students. If you would like to ensure that at least three significant digits are used,
then a specification such as 3,15 ensures at least three digits are used, but will quietly
accept up to 15.

Note that care must be used when using formatted computer answers together with
a significant digit specification. You must ensure that the formatted answer provides
enough significant digits. To test the formatted answer, LON-CAPA converts the com-
puter answer, as generated in the script block, according to the format attribute in
the numericalresponse tag, e.g. 3f. Then LON-CAPA separately applies that num-
ber of significant figures to the computer answer, and if that result falls outside the
range specified in the significant digit parameter, it ”grades” the computer answer as
SIG FAIL (i.e., not correct). It is a good idea to use the problem testing environment
to test plenty of different randomizations to make sure that your format and sig digits
parameters are compatible. This helps ensure that the formatted answer has enough
significant digits.

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 40

6. The Single Line Text Entry area, as in other problem types, allow you to manipulate
the text entry area the student will see.

7. Finally, the Hint should contain text which will help the students when they answer
incorrectly.

7.3 Simple Numerical Response Answer

Along with showing the Numerical Response editor, figure 17 also shows the parameters for
one of the simplest possible types of numerical responses. The Text Block has the problem’s
question, which is the static text “What is 2 + 2?” The Answer is “4”. The Hint has been
set to something appropriate for this problem. Everything else has the default values from
when the problem was created.

If you create a problem like this, hit Submit Changes, then hit View after the changes
have been submitted, you can try the problem out for yourself. Note the last box in the
HTML page has the answer LON-CAPA is looking for conveniently displayed for you, along
with the range the computer will accept and the number of significant digits the computer
requires when viewed by an Author.

As you’re playing with the problem, if you use up all your tries or get the answer correct
but wish to continue playing with the problem, use the Reset Submissions button to clear
your answer attempts.

7.4 Simple Script Usage

Totally static problems only scratch the surface of the Numerical Response capabilities. To
really explore the power of LON-CAPA, we need to start creating dynamic problems. But
before we can get to truly dynamic problems, we need to learn how to work with the Script
window.

A script consists of several statements, separated by semi-colons. A statement is
the smallest kind of instruction to the computer. Most problems will be built from several
statements.

A script can contain comments, which are not interpreted as statements by the com-
puter. Comments start with # and go to the end of that line. Thus, if a line starts with #,
the whole line is ignored. Comments can also begin in the middle of a line. It is a good idea
to comment more complicated scripts, as it can be very difficult to read a large script and
figure out what it does. It is a very good idea to adopt some sort of commenting standard,
especially if you are working in a group or you believe other people may use your problems
in the future.

• One of the simplest statements in LON-CAPA is a variable assignment. A variable
can hold any value in it. The variable name must start with a $. In the Script, you
need to assign to variables before you use them. Put this program into the Script field
of the Numerical Response:

$variable = 3;

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 41

This creates a variable named variable and assigns it the value of “3”. That’s one
statement.

Variable names are case sensitive, must start with a letter, and can only consist of letters,
numbers, and underscores. Variable names can be as long as you want.

There are many variable naming conventions, covering both how to name and how to
capitalize variables1. It is a good idea to adopt a standard. If you are working with a group,
you may wish to discuss it in your group and agree on a convention.

If you Submit Changes and View the problem, you will see nothing has changed. This
is because in order for a variable to be useful, it must be used. The variable can be used in
several places.

7.4.1 Variables in Scripts

Variables can be used later in the same script. For instance, we can add another line below
the $variable line as such:

$variable2 = $variable+2;

Now there is a variable called $variable2 with the the number “5” as its value.
Variables can also be used in strings , which are a sequence of letters. The underlying

language of the script, Perl, has a very large number of ways of using variables in strings,
but the easiest and most common way is to use normal double-quotes and just spell out the
name of the variable you want to use in the string, like this:

$stringVar = "I have a variable with the value $variable.";

This will put the string “I have a variable with the value 3.” into the variable named
“stringVar”.

If you are following this chapter as a tutorial, add the previous two lines to your Script
and submit the changes for the problem. There’s no need to view it; there’s still no visible
change.

7.4.2 Variables in the Text Block

Once you’ve defined variables in the Script, you can display them in the Text Block. For
example, using the previous three-line script we’ve created so far, you can place the following
in the Text Block:

See the 3: $variable

See the string: $stringVar

1The author favors capsOnNewWords. Some people use underscore to separate words. Many use up-

percase letters to specify constants like PI or GOLDEN MEAN. Some people always StartWithCapatalization.

What’s really important is to be consistent, so you don’t have to guess whether the variable you’re thinking

of is coefFriction, CoefFriction, COEF FRICTION, or something else.

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 42

Figure 18: Result of Variables in the Text Block

$a = -3.0;
$b = &sin($a);
$c = &pow(3.0, &abs($a));

Figure 19: Some Function Calls

If you save that and hit View, you should get what you see in figure 18. Note how the
“$variable” was turned into a 3, and the “$stringVar” was turned into “I have a variable
with the value 3.”

If you are generating numbers using a formula which includes a division operation, it
is advisable to format your output. For example, if $variable=1/3, it will display with too
many digits. You can adjust the format using the num output tag described in the Output
Tags section 15.6

7.4.3 Variables in the Answer Block

You can use variables in the Answer part of the question. This means you can compute an
answer to a question. If you set the answer of the question to be $variable, Save Changes
and View it, you’ll see that LON-CAPA is now expecting “3.0” as the answer, plus or minus
5%.

7.5 Calling Functions

With variables, you can store strings or numbers. Functions allow you to manipulate these
strings or numbers. Functions work like mathematical functions: They take some number
of arguments in, and return one argument, usually a number or a string for our purposes.
There are a lot of functions available in LON-CAPA. You can see a complete list in the
Script section 16.1 and LON-CAPA function section 16.3.

For now, let’s just look at some simple examples.
In the Script block, function names start with &. Some example function calls are shown

above. You can see that functions can take either variables, numbers, or the results of other
function calls as parameters. The &sin function returns the sine of an angle expressed in
radians. &pow raises the first parameter to the power of the second parameter. &abs returns
the absolute value of the argument.

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 43

Figure 20: Formula Response Problem

7.5.1 Numerical Response Randomization

If you’re following this material and creating an example, click the button for a new random
seed to generate other problem presentations.

7.6 Authoring Formula Response Problems

Formula Response problems authoring is illustrated by Figure 20. Note how the function is
randomly generated, as well as the answer. Note that sampling is also available for evaluating
answers. Sampling is a good alternative when students may give several equivalent forms
that are difficult to compare in text. Clicking the help box next to the Sample Points field
describes how to use sample points instead of a text comparison.

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 44

Figure 21: Slope Problem Parameters

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 45

7.7 Dynamic, Randomized Problems: Putting It All Together

Now you have all the tools to create those wonderful dynamic, randomized problems that
you’ve seen in LON-CAPA. Consider a Numerical Response problem where the equations
for two lines are randomly generated and the students are asked to find the intercept. Try
filling out your problem with the parameters shown in Figure 21.

When creating randomized problems, you want to make sure that the problems always
have an answer. Consider what might happen if two slopes are chosen, both with the ex-
pression &random(-1.0,1.0,.2). One out of ten students would get a problem where both
slopes were equal, which has either no solution (for unequal y-intercepts) or an infinite num-
ber of solutions (for equal slopes and y-intercepts). Both of these cause a division-by-zero
error on the division that computes the answer. There are many ways to avoid this, one of
the easiest of which is picking one slope negative and one positive. This same problem can
show up in many other places as well, so be careful.

7.8 Units, Format

Numerical Response problems can require units. In the problem editing form, place the
desired unit in the Unit field. A complete list of units is in the Physical Units section (20).
The computer will accept the answer in any of its accepted unit formats. For example, if
the answer to a problem is “1ft”, the computer will accept “12in” as correct.

Additional units can be defined using the “customunits” parameter, which is a comma-
separated list of unit conversions. For example

peck=2*gallon,bushel=8*gallon,gallon=4.4*L

would define the new units peck, bushel, and gallon. The last entry in a conversion chain
always needs to be a unit that LON-CAPA already supports.

You can format the number displayed by the computer as the answer. For instance, if
the answer is one-third, the computer will display that it computed “.333333333” as the
answer. If you’d like to shorten that, you can use the Format field. Format strings like
“2E” (without the quotes) will display three significant digits in scientific notation. Format
strings like “2f” will display two digits after the decimal point. Format strings like “2s” will
round a number to 2 significant digits. For a summary of numerical format statements, see
the num tag item in the Output Tags section (15.6).

7.9 For More Information

The full power of Perl is well outside the scope of this document. Looking in the function
list in the section 16.3 can give you some ideas. O’Reilly has some good Perl books. Enter
”perl” in the search box at http://search.oreilly.com .

If you need help, you might search the listserv at
http://mail.lon-capa.org/mailman/swish.cgi or consider joining the users listserv to
ask other users for advice at http://mail.loncapa.org , or use the Help link to contact
the Help desk. Often other users are quick to provide help.

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 46

Our advanced users often come to prefer the XML interface for the problems, available
through the EditXML buttons. Covering the XML format is beyond the scope of this
manual, but you can learn a lot by using the editor to make changes and seeing what happens
to the XML. Supported XML tags are discussed in the Tags Used in XML Authoring section
(15).

7.10 Formula Response

Formula Response problems have the same capabilities as Numerical Response problems,
and add the ability to ask the student for a symbolic formula as an answer, instead of a
simple number.

7.10.1 Sample Specifications

As you may know, it is extremely difficult to determine whether a given expression is exactly
equal to another expression in general. For example, is sin 2x = 2 sinx cos x? LON-CAPA
has two ways of finding out if it is:

• algebraically, using a symbolic algebra system

• numerically, using sampling points

You need to determine which way is the safest in a given situation.
If you don’t specify sampling points, the symbolic algebra system is used.
If you do specify sampling points, LON-CAPA uses them. If your answer and the stu-

dent’s answer agree at the sampling points within your given tolerance factor, the student’s
answer will be accepted. If the student’s answer does not agree at the sampling points within
your given tolerance factor, it will be rejected.

To specify where to sample the formulas for determining whether the student’s answer is
correct, you need to put a sampling specification in the Sample Points field. The sampling
specifications take the following format:

1. A comma-separated list of the variables you wish to interpret,

2. followed by “@” (not in quotes),

3. followed by any number of the following two things, separated by semi-colons:

(a) a comma-separated list of as many numbers as there are variables, which specifies
one sampling point, OR

(b) a comma-separated list of as many numbers as there are variables, followed by a
colon, followed by another list of as many numbers as there are variables, followed
by a #, followed by an integer.

The first form specifies one point to sample. The second form specifies a range for each
variable, and the system will take as many random samples from that range as the number
after the #.

For 2x2 + 4, with one variable “x”, one could specify:

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 47

• “x@2”, which will sample the answers only at 2. (This is generally a bad idea, as the
student could get lucky and match at that point)

• “x@1:5#4” will takes 4 samples from somewhere between 1 and 5.

• “x@1:5#4;10” will takes 4 samples from somewhere between 1 and 5, and also sample
at 10.

For 2x2 + 3y3 + z, which has three variables, one could specify:

• “x,y,z@4,5,3:10,12,8#4;0,0,0”, which take four samples from the box determined by
the points (4, 5, 3) and (10, 12, 8), and also sample the point (0, 0, 0).

7.10.2 Formula Notes

• The formula evaluator can not handle things of the form “x + - y”. If you have a
random variable that may be positive or negative (as in the example following this
section), you can try wrapping the references to that variable in parentheses. As
always, it is a good idea to try out several randomized versions of your problems to
make sure everything works correctly.

• Never use relative tolerance in Formula Response problems. Relative toler-
ance is poorly defined in Formula Response problems. Always use absolute tolerance.

7.10.3 Example Formula Response

A very simple formula response problem:

• In the Script, place the following:

$slope = &random(-5.0,5.0,.5);

$yint = &random(-5.0,5.0,.5);

$answer = "$slope*x + ($yint)";

• In the Text Block, place the following: “For a line with slope $slope and y-intercept
$yint, what is y equal to?”

• In the Answer, place the following: $answer

• Set the Tolerance to .000001.

• Set the Sample Points to x@0;1;2;3 .

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 48

7.11 Authoring Math Response Problems

Math response problems use a cas system to evaluate the student response. Which computer
algebra system is to be used is specified in the cas argument of the mathresponse tag; both
Maxima and R are supported. Maxima and R are also powerful stand-alone programs that
can be installed on most operating systems. If you are interested in writing Maxima or
R problems, it is a good idea to install a copy on your operating system to access help,
learn syntax, and test your expected responses outside the LON-CAPA environment. See
http://maxima.sourceforge.net/ or http://www.r-project.org/ .

LON-CAPA will accept two pre-named arrays inside the answerblock for the computer
algebra system: RESPONSE and LONCAPALIST. RESPONSE contains the student input
by comman-separated entities, for example, if “3,42,17” is entered by the student, RE-
SPONSE[2] would be 42. LONCAPALIST is built from the arguments passed in an array
args which is assigned a array value from the script.

The answer tag contains the Maxima command (and syntax) that are passed to Maxima
after the RESPONSE and LONCAPALIST values are substituted. (See example below). The
answerdisplay variable contains what is displayed when the problem is in “Show Answer”
mode. You will want to include this field so that the students can see the correct answer
after the “Show Answer Date” configured when the problem is assigned in the course space.
Also note the description in the postanswerdate tag that is displayed after the answer date.

The following example illustrates this.

<problem>

<script type="loncapa/perl">

$a1 = random(-6,6,4);

$a2 = random(-6,6,4);

$n1 = random(3,11,2);

$n2 = random(2,10,2);

$function = "$a1*cos($n1*x)+$a2*sin($n2*x)";

reformat next two lines as single line if you copy/paste into a script

$example=&xmlparse(’An example would be

<m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>’);

</script>

<startouttext />

Give an example of a function

which is orthogonal to <algebra>$function</algebra> with respect to the

scalar product

<m>

\[<g \mid h> =

\frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]

</m>

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 49

whose norm is 1.

<endouttext />

<mathresponse answerdisplay="$example" cas="maxima" args="$function">

<answer>

overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;

norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;

is(overlap=0 and norm=1);

</answer>

<textline readonly="no" size="50" />

<hintgroup showoncorrect="no">

<mathhint name="ortho" args="$function" cas="maxima">

<answer>

overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;

is(not overlap = 0);

</answer>

</mathhint>

<mathhint name="norm" args="$function" cas="maxima">

<answer>

norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;

is(not norm = 1);

</answer>

</mathhint>

<hintpart on="norm">

<startouttext />

The function you have provided does not have a norm of one.

<endouttext />

</hintpart>

<hintpart on="ortho">

<startouttext />

The function you have provided is not orthogonal.

<endouttext />

</hintpart>

</hintgroup>

</mathresponse>

<postanswerdate>

<startouttext />

<p>

Note that with respect to the above norm, <m>$\cos(nx)$</m> is perpendicular

to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m> for

<m>$n\ne m$</m>.

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 50

</p>

<endouttext />

</postanswerdate>

</problem>

7.12 Custom Response Problems

Custom Response is a way to have a problem graded based on an algorithm. The use of
this response type is generally discouraged, since the responses will not be analyzable by the
LON-CAPA statistics tools.

For a single textfield, the student’s answer will be in a variable $submission. If the
Custom Response has multiple textfields, the answers will be in an array reference, and can
be accessed as $$submission[0], $$submission[1], etc.

The student answer needs to be evaluated by Perl code inside the < answer>-tag. Cus-
tom Response needs to include an algorithm that determines and returns a standard LON-
CAPA response. The most common LON-CAPA responses are:

• EXACT ANS: return if solved exactly correctly

• APPROX ANS: return if solved approximately

• INCORRECT: return if not correct, uses up a try

• ASSIGNED SCORE: partial credit (also return the credit factor,
e.g. return(ASSIGNED SCORE,0.3);)

• SIG FAIL, NO UNIT, EXTRA ANSWER, MISSING ANSWER, BAD FORMULA,
WANTED NUMERIC, WRONG FORMAT: return if not correct for different reasons,
does not use up a try

The answerdisplay is shown instead of the student response in ‘show answer’ mode after
the answer date. The following example illustrates this:

<problem>

<startouttext />Accept an answer of around 90 or -90<endouttext />

<customresponse answerdisplay="something near 90 or -90">

<answer type="loncapa/perl">

This examples uses perl ’regular expressions’ for string evaluation.

Consult a perl reference for help understanding the regular expressions.

We do not want a vector

if ($submission=~/\,/) { return ’EXTRA_ANSWER’; }

Need a numerical answer here

if ($submission!~/^[\d\.\-\e]+$/i) { return ’WANTED_NUMERIC’; }

$difference=abs(90-abs($submission));

if ($difference==0) { return ’EXACT_ANS’; }

if ($difference < 0.1) { return ’APPROX_ANS’; }

return ’INCORRECT’;</answer>

7 AUTHORING NUMERICAL, FORMULA, CUSTOM RESPONSE QUESTIONS 51

<textline readonly="no" />

</customresponse>

</problem>

Full list of possible return codes:

• EXACT ANS: student is exactly correct

• APPROX ANS: student is approximately correct

• NO RESPONSE: student submitted no response

• MISSING ANSWER: student submitted some but not all parts of a response

• EXTRA ANSWER: student submitted a vector of values when a scalar was expected

• WANTED NUMERIC: expected a numeric answer and didn’t get one

• SIG FAIL: incorrect number of Significant Figures

• UNIT FAIL: incorrect unit

• UNIT NOTNEEDED: submitted a unit when one shouldn’t

• UNIT INVALID INSTRUCTOR: the unit provided by the author of the problem is
unparsable

• UNIT INVALID STUDENT: the unit provided by the student is unparasable

• UNIT IRRECONCIBLE: the unit from the student and the instructor are of different
types

• NO UNIT: needed a unit but none was submitted

• BAD FORMULA: syntax error in submitted formula

• WRONG FORMAT: student submission did not have the expected format

• INCORRECT: answer was wrong

• SUBMITTED: submission wasn’t graded

• DRAFT: submission only stored

• MISORDERED RANK: student submitted a poorly order rank response

• ERROR: unable to get a grade

• ASSIGNED SCORE: partial credit; the customresponse needs to return the award
followed by the partial credit factor

• TOO LONG: answer submission was deemed too long

8 AUTHORING DYNAMICALLY GENERATED PLOTS 52

• INVALID FILETYPE: student tried to upload a file that was of an extension that was
not specifically allowed

• EXCESS FILESIZE: student uploaded file(s) with a combined size that exceeded the
amount allowed

• COMMA FAIL: answer requires the use of comma grouping and it wasn’t provided or
was incorrect

8 Authoring Dynamically Generated Plots

The gnuplot LON-CAPA tag allows an author to design a plot which will be created pro-
gramatically at the time when it is requested for display by a student. This is intended for
use in homework problems where a distinct plot should be rendered for each student. It can
be used in conjunction with a script tag to generate curve data for random plots. If you are
using static data a dynamically generated plot is not appropriate because of the overhead
associated with generating the plot. In that case, use a picture (see “Adding Picture” section
5.3.2).

The easiset way to create a template for a gnuplot tag is to use the colorful problem
editor, and select GnuPlot from the Insert dropdown menu. Thereafter the boxes may
be filled using this documentation to assist you. By default, only the parent gnuplot tag
and the child curve tag are created by when the plot is inserted into a problem using the
colorful editor. Other tags can be added to decorate and polish your plot using the Insert:
dropdown provided by the colorful editor.

The following gnuplot parameters may be set:

• brief description of the plot This text is used as the alt value of the img tag
used to display the plot on a web page.

• background color of image (xffffff) See the “Color Selection” section 8.4 for
help on specifying colors.

• foreground color of image (x000000) See the “Color Selection” section 8.4 for
help on specifying colors.

• height of image (pixels)

• width of image (pixels)

• Size of font to use “small”, “medium”, or “large”. The font used for any text on
the plot is set with this tag.

• Transparent image “Yes” or “No”. If the image is transparent the background color
will be ignored.

• Display grid “Yes” or “No”.

8 AUTHORING DYNAMICALLY GENERATED PLOTS 53

• Number of samples for non-data plots If a function tag is used (see “Plotting
Functions” section 8.1.2) to specify the curve (see “Specifying Curves to Plot” section
8.1), this indicates the number of sample points to use.

• Draw border around plot “Yes” or “No”

• alignment for image in html “Left”, “Center”, or “Right”. This is the value used
for the align parameter in the img tag which embeds the plot in the problem.

• Width of plot when printed (mm) The width in mm of the plot when it is printed.
The default is approximately one half of a U.S. letter size page, 93 mm.

• Font size to use in TeX output (pts) The size in points of text on the graph
when it is printed out.

• Plot type “Cartesian” or “Polar”.

• margin width (pts) The left, right, top, or bottom margin width measured in points.

• Size of major tic marks The size of the larger tic marks on the plot border or axes,
measured in graph units.

• Size of minor tic marks The size of the smaller tic marks on the plot border or
axes, measured in graph units.

The parent gnuplot tag allows use of the following child tags (only the curve tag is
added automatically when inserting with the colorful editor):

• curve (see “Specifying Curves to Plot” section 8.1)

• title, xlabel, and ylabel (see “Plot Labels and Key” section 8.2)

• key (see “Plot Labels and Key” section 8.2)

• label (see “Plot Labels and Key” section 8.2)

• axes (see “Plot Axes Details” section 8.3)

• tics (see “Plot Axes Details” section 8.3)

8.1 Specifying Curves to Plot

The curve tag is where you set the data to be plotted by gnuplot.
The following parameters may be present in the curve tag and allow access to most of

the formatting parameters for a curve in gnuplot.

• color

The color of the curve on the plot. See “Selecting Colors” section 8.4.

8 AUTHORING DYNAMICALLY GENERATED PLOTS 54

• name

If a key is present, the name of the curve will appear with a sample of its line type.

• linestyle

See “Line Styles” section 8.1.3 for more information about the available line styles and
their data requirements.

• linetype

The type of line. Current options include ‘solid’ and ‘dashed’. At this time, all dashed
lines draw with line width of ‘1’ in web output. This parameter may not apply to all
linestyles.

• linewidth

The thickness of the line drawn by plotting engine. This parameter may not apply to
all linestyles.

• pointtype

This parameter may not apply to all linestyles.

• pointsize

This parameter may not apply to all linestyles. The size of the points, in pixels, present
on the line. Some point types are not affected by this parameter.

• limit

This parameter controls the pont to fill for fillled curves.

• arrowhead

For vector plots, controls where in the vector the arrow head(s) appear

• arrowstyle

For vector plots controls the fill style of the arrow.

• arrowlength

For vector plots determines the distance between the vector line end and the tip of the
arrow.

• arrowangle

For vector plots, determines the angle the arrow branches make with the vector line.

• arrowbackangle

For vector plots, determines the angle the arrow lines that return to the main line from
the branches make with the arrow branches.

There are two ways of entering the information to be plotted, which are accessed using
the subtags of curve, data (see “Plotting Data Points” section 8.1.1) and function (see
“Plotting Functions” section 8.1.2).

8 AUTHORING DYNAMICALLY GENERATED PLOTS 55

8.1.1 Plotting Data Points

The data tag is used to specify the values plotted in the gnuplot tag (see “Authoring
Dynamically Generated Plots” section 8). The data tag is only used in the Curve tag (see
“Specifying Curves to Plot” section 8.1).

The data must be either a perl array, @X, or a comma separated list, such as “0.5,0.9,1.5,
2.4” (without quotes). ‘NaN’ is a valid value. Note the the “Y” values are entered in a
separate array.

The function and number of data tags required varies based on the line style (see “Data
and Line Styles” section 8.1.3) chosen for the curve. Some linestyles require extra arrays for
supplemental information. In all cases the first data tag will hold the “X” values and the
second will hold the “Y” values.

All of the data sets in the data tag must have the same number of elements.

8.1.2 Plotting Functions

The function tag allows you to specify the curve to be plotted as a formula, instead of
numerical data.

The function must be a mathematical expression. Use the independent variable “x” for
cartesian plots and “t” for polar plots. Implicit multiplication is not accepted by Gnuplot.
The following are examples of valid functions and invalid functions:

• sin(x)

• sin(2*x)

• sin(x**2)

• exp(x)

• 3*x**x

• exp(sin(2*x))

• sinh(x)

• sin(t)*cos(t) (polar plot only)

8.1.3 Data and Line Styles

Unless otherwise noted the linestyles require only 2 data sets, X and Y.

• lines Connect adjacent points with straight line segments.

• points Display a small marker at each point.

• linespoints Draw both lines and points.

Draws a small symbol at each point and then connects adjacent points with straight
line segments.

8 AUTHORING DYNAMICALLY GENERATED PLOTS 56

• dots Place a tiny dots on the given points.

• steps Connect points with horizontal lines.

This style connects consecutive points with two line segments: the first from (x1,y1)
to (x2,y1) and the second from (x2,y1) to (x2,y2).

• fsteps Connect data with horizontal lines.

This style connects consecutive points with two line segments: the first from (x1,y1)
to (x1,y2) and the second from (x1,y2) to (x2,y2).

• histeps Plot as histogram.

Y-values are assumed to be centered at the x-values; the point at x1 is represented as a
horizontal line from ((x0+x1)/2,y1) to ((x1+x2)/2,y1). The lines representing the end
points are extended so that the step is centered on at x. Adjacent points are connected
by a vertical line at their average x, that is, from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).

• errorbars Same as yerrorbars.

• xerrorbars Draw horizontal error bars around the points.

Requires 3 or 4 data sets. Either X, Y, Xdelta or X, Y, Xlower, Xupper. Xdelta is a
change relative to the given X value. The Xlower and Xupper values are absolute grid
coordinates of the upper and lower values to indicated with error bars.

• yerrorbars Draw vertical error bars around the points.

Requires 3 or 4 data sets. Either X, Y, Ydelta or X, Y, Ylower, Yupper. Ydelta is
a change relative to the given Y value. The Ylower and Yupper values are the grid
coordinates of the upper and lower values to indicate with error bars.

• xyerrorbars Draw both vertical and horizontal error bars around the points.

Requires 4 or 6 data sets. Either X, Y, Xdelta, Ydelta or X, Y, Xlower, Xupper,
Ylower, Yupper. Xdelta and Ydelta are relative to the given coordinates. Xlower,
Xupper, Ylower, and Yupper are the grid coordinates of the upper and lower values to
indicate with the error bars.

• boxes Draw a box from the X-axis to the Y-value given.

Requires either 2 or 3 data sets. Either X, Y or X, Y, Xwidth. In the first case
the boxes will be drawn next to eachother. In the latter case Xwidth indicates the
horizontal width of the box for the given coordinate.

• vector Draws a vector field based on the given data.

Requires 4 data sets, X, Y, Xdelta, and Ydelta. The ‘vector‘ style draws a vector from
(X,Y) to (X+Xdelta,Y+Ydelta). It also draws a small arrowhead at the end of the
vector. May not be fully supported by gnuplot.

8 AUTHORING DYNAMICALLY GENERATED PLOTS 57

8.2 Plot Labels and Key

Three of the more basic tags are title, xlabel, and ylabel. Their size and color depend on
the values chosen for the font size and graph foreground color specified in the gnuplot tag.
The figure below shows the locations of the various labels.

The key tag causes a key to be drawn on the plot when it is generated. The key will
contain an entry for each curve which has a name (see “Specifying Curves to Plot” section
8.1).

The key is the color of the foreground of the plot, specified in the gnuplot tag (see
“Authoring Dynamically Generated Plots” section 8).

The label tag allows the author to place text at any position on the plot. There may
be many label tags on one plot and all the labels which fall within the plot will show. The
color used will be to foreground color of the plot and the font will be the size specified for
the plot, both of which are set in the gnuplot tag (see “Authoring Dynamically Generated
Plots” section 8).

• justification of the label text on the plot “left”, “right”, or “center”.

• rotation of label (degrees)

• x position of label (graph coordinates)

• y position of label (graph coordinates)

The text to be placed on the plot must be entered as well.

8.3 Plot Axes Details

The Plot Axes tag allows you to specify the domain and range of the data to display. It
is closely tied with the Plot Ticks 8.3 tags, which specify where the gridlines are drawn on
the plot. The Plot Axes tag sets the following parameters:

The color of grid lines
If the “Display Grid” parameter of the Gnuplot tag is set to yes, the grid will be displayed

in the specified color. Hexadecimal notation is used to specify the color (see Color Selection
section 8.4).

8 AUTHORING DYNAMICALLY GENERATED PLOTS 58

The view of the graph shown
The viewing rectangle of the graph is set with the following parameters:

• minimum x-value

• maximum x-value

• minimum y-value

• maximum y-value

See also the Plot Ticks section 8.3 and the general Gnuplot help section 8.
The xtics and ytics tags can be inserted by selecting the Plot tics item from the insert

selection list of the gnuplot tag.
The xtics and ytics tags have identical structure and the description presented here

applies to both.
The tics tags allow specification of the following attributes:

• Location of major tic marks “Border” or “Axis”. Tic marks can be placed on the
border or on the axes. The images below illustrate the effects of each of these options.

• Mirror tics on opposite axis? “Yes” or “No”. If the location of tic marks
is set to “border” this parameter determines if they are shown on both the top and
bottom or right and left sides of the graph. The “mirror” tic marks are unlabelled.

8 AUTHORING DYNAMICALLY GENERATED PLOTS 59

• Start major tics at

The point in graph coordinates which to start making major tics. This may be less
than or greater than the lower limit for the axis.

• Place a major tic every

The span, in graph coordinates, between each major tic mark.

• Stop major tics at

This may be less than or greater than the upper limit for the axis.

• Number of minor tics between major tic marks

The number of subdivisions to make of the span between major tic marks. Using a
value of “10” leads to 9 minor tic marks. The example below uses a value of “5” to
produce 4 tic marks.

• rotate

For output devices that support it, the rotate=‘1’ attribute rotates the tic label. This
is most useful with large lables defined by the tic tag described below.

In addition to specifying regular tic intervals via the attributes of the xtics and ytics
you can specify arbitrary tic locations by enclosing tic tags within the body of these tags.
Each tic tag requires the location attribute which specifies the location of a tic on the axis.
The body of the tag contains the label of that tic.

The xtic or ytic rotate attribute can rotate the label text if the output device supports
text rotation. If tic tags are embedded within the xtic or ytic tags attributes of those tags
that specify tic boundaries and interval are ignored. Here’s an example of an X axis tic
specification in months of the year:

...

<xtics rotate=’on’>

<tic location=’1’>January</tic>

<tic location=’2’>February</tic>

<tic location=’3’>March</tic>

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 60

<tic location=’4’>April</tic>

<tic location=’5’>May</tic>

<tic location=’6’>June</tic>

<tic location=’7’>July</tic>

<tic location=’8’>August</tic>

<tic location=’9’>September</tic>

<tic location=’10’>October</tic>

<tic location=’11’>November</tic>

<tic location=’12’>December</tic>

</xtics>

<ytics end="6.0" location="border" start="-6.0"

increment="1.0" mirror="on" />

Note that tic locations are completely under your control and do not even have to be at
regular interevals on the axis if that better suits your needs.

8.4 Color Selection

The default colors are a white background (xffffff) with black (x000000) forground, gridlines,
and curve.

• Background color is an attribute of the gnuplot tag (see “Authoring Dynamically Gen-
erated Plots” section 8). This controls the color of the plot image. The default is white
(xffffff).

• Foreground color is an attribute of the gnuplot tag (see “Authoring Dynamically Gen-
erated Plots” section 8). This controls the color of the border.

• Gridline color is an attribute of the axis tag (see “Plot Axes Details” section 8.3).

• Curve color is an attribute of the curve tag (see “Specifying Curves to Plot” section
8.1). This is the color of the curve function or data points. Different curves can be
given different colors.

9 Authoring Function Plot Response Problems

9.1 Introduction

Creating a Function Plot Response problem involves several steps. This section intro-
duces the major settings and subsequent sections cover other details.

“Label x-axis” and “Label y-axis” - Enter the label and/or units for the axes on the
graph. Leaving them blank will result in no axis labels.

“Minimum x-value”, “Maximum x-value”, “Minimum y-value”, and “Maximum y-value”
- Entering values here will set the value of the graph at the left, right, bottom, and top edges
(respectively). Default is -10, 10, -10, and 10 respectively.

“x-axis visible” and “y-axis visible” - This allows for each axis to be turned on or off.

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 61

“Grid visible” - This determines whether or not the grid is on the graph.
“Background plot(s) for answer” - This is a green curve the computer will display once

the correct answer has been submitted. It is static, and can be given as a piecewise function.
Since some problems will have multiple correct answers, this necessarily will only be a possible
answer. Only the left hand side of the equation is necessary. For example, entering x + 2
will display the line y = x+2. The syntax must be syntax recognized by GeoGebra. To test
syntax for Geogebra directly, visit http://www.geogebra.org/webstart/geogebra.html .

The tag should include the following additional subsections

• Response Elements

• Rule Set

9.2 Elements

Which Elements you use depends on the type of problem you want to make.

• Background Plot - This places a static curve on the graph of your choosing. It can
be labeled, moveable or fixed, and any color desired. Only the right hand side of the
function you want displayed is necessary. For example, entering x+ 2 will display the
line y = x + 2. The syntax must be syntax recognized by GeoGebra. To test syntax
for Geogebra directly, visit http://www.geogebra.org/webstart/geogebra.html .

• Spline - At least one spline is necessary for a graph problem. These splines are what
will be adjusted and analyzed to solve the problem.

• Object - This places a point in the applet. Generally intended to be used with Vectors
to create problems involving Free-Body Diagrams or any other points that vectors (or
arrows) connect to and from.

• Vector - This creates a vector (or arrow) in the applet. Generally intended to be
used with Objects to create problems involving Free-Body Diagrams or to establish
connections between Objects.

Splines

“Index” - This is the label assigned to the spline. In general, it’s simplest just to label them
A, B, C etc.

“Order” - This determines the number of Control Points on the spline. For example,
selecting ’3’ means there will be 3 points on the spline that can be moved, as well as 3 points
off the spline that will control the slope.

“Initial x-value” and “Initial y-value” - These values determine where the left most Con-
trol Point will be.

“Scale x” - This determines the right most location of the Control Points (on the spline).
To figure out where this point will be, add ’Initial x-value’ to ’Scale x’.

“Scale y” - This determines the distance (in the y-direction) between the Control Points
on the spline, and the ones that control the slope.

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 62

Vectors

• “Label on Plot” - Determines the name of the vector, as well as the name that will be
visible in the problem. This value MUST be capitalized and cannot include spaces or
most symbols. To be safe, stick with letters and numbers.

• “Tail x”, “Tail y”, “Tip x”, and “Tip y” - Determines where the vector’s tail and tip
will be placed in the applet when the problem is first loaded. Vectors are moveable
by the students, and will not revert to these values after the student has submitted an
answer.

Objects

• “Label on Plot” - Determines the name of the object, as well as the name that will be
visible in the problem. This value MUST be capitalized and cannot include spaces or
most symbols. To be safe, stick with letters and numbers.

• “x” and “y” - Determines where the object will be placed in the applet. The object is
not moveable by the students, so whatever value is chosen here is fixed.

Background Plots

“Function” - Enter the function here. An equals sign is not necessary. Just give the right
hand side of the function. LON-CAPA variables are usable as well to allow individualized
problems for each student. The syntax must be syntax recognized by GeoGebra. To test
syntax for Geogebra directly, visit http://www.geogebra.org/webstart/geogebra.html .

“Initial x-value” and “Final x-value” - The function does not need to span the entire
graph. It is possible to create a piecewise function by defining the x-values over which each
function is to be shown.

“Label on Plot” - To label the background function (for example, as “parabola”), enter
it here.

“Color” - To change the color of the background function, enter the hex code for that
color here. The default is 000000 (black). It is recommended to choose a color other than
green, since it is easily confused with being the answer.

9.3 Rules

This is where the rules are defined. These rules will determine whether or not an entered
answer is correct or not. If there are no rules, any answer will be deemed correct. If there is
more than one rule, when an answer is submitted, the server will analyze them in order until
one of them is broken (of course, if it’s a correct answer, it will go through all of them and
return a green box). In such an event, any subsequent rules will be ignored. If conditional
hints related to these rules are added, only the first broken rule’s hint will be shown, even if
all rules are broken.

• “Graph Rule” - Used to evaluate graph problems.

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 63

• “Vector Rule” - Used to test whether vectors are in the right place, pointed in the right
direction, and have the correct length.

• “Vector Sum Rule” - Used to test the sum of a set of vectors.

• “Custom Rule” - Used to create rules that the other rules can’t do. (Advanced)

Graph Rule

Overview - This box is used to create a rule that determines whether or not a submitted
graph is correct. In general, it takes the form of testing the function, its integral, or its first
or second derivative over a given set of x-values. The test can be to see if it equals, is greater
than, or less than a specified value. Anywhere a number is needed, a variable can also be
used. (Skip to the bottom for examples of rules.)

• “Index/Name” - This is an internal label for the rule. Something must be entered
here, and it must be different for each rule. This same value will be used to add a
conditional hint.

• “Function” - This determines what the server will be testing. For instance, choose
‘First derivative’ causes the server to evaluate the derivative of the entered answer
over the given domain.

• “Initial x-value” and “Initial x-value label” - A value must be entered for one of these.
Either choose a numerical value for x (the first option), or choose the beginning of the
submitted answer, the end, or a previously chosen named point (see below).

• “Final x-value” and “Final x-value label” - This determines the end of the domain
over which the rule examines. To test only a single point (the initial value), leave these
blank. If a label is entered, such as ‘positive’, the point at which the rule fails will be
given this special label. This label can then be used in subsequent rules as an ’Initial
x-value label’.

• “Minimum length for range” - This tests that the difference between the initial and
final x-values are at least a certain length apart. This is only useful if there is at least
one label.

• “Maximum length for range” - This tests that the difference between the initial and
final x-values are at most a certain length apart. This is only useful if there is at least
one label.

• “Relationship” - The heart of the rule. This choice determines whether the chosen
‘Function’ is greater than, less than, equal to, etc. a certain ‘Value’.

• “Value” - Enter the number you wish to compare to. It is also possible to choose ‘not
defined’, in the event the answer should not have a value for the given domain. Within
the value argument, the function itself can be evaluated using &fpr f(), its derivative
using &fpr dfdx(), and its second derivative using &fpr d2fdx2(). This allows for a

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 64

comparison of two points on the graph. The value of a previously defined label can
be retrieved using the function &fpr val(), e.g., &fpr val(‘positive’). Previous defined
values from script blocks can also be retrieved as normal variables, e.g., $x.

• “Percent error” - This allows for a margin of error in the y-direction. For instance, if
the rule requires that the derivative be equal to 5, the server will accept values close
enough to 5 that are within the percent error defined here. Note: Choosing 10% would
not mean that the answer is correct as long as it is within the range 4.5-5.5. Instead, the
percent corresponds to the total size of the graph. For the function itself, the ‘percent
error’ is multiplied by the ymax-ymin; for the first derivative, it’s multiplied by (ymax-
ymin)/(xmax-xmin); for the second derivative, it’s multiplied by (ymax-ymin)/(xmax-
xmin)2; and for the integral, it’s multiplied by (ymax-ymin)*(xmax-xmin).

The figure below shows some examples of rules.

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 65

1. Checks that the derivative at x = 3 is negative.

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 66

2. Checks that the second derivative at x =$time1 is 0.

3. Checks that the value of the function > 7 from “Start of Graph” to x = 5.

4. Checks that the function is 0 from x = 0 until the function is no longer 0, labeling this
new point ‘notzero’.

5. Checks that the first derivative is positive between the point ‘notzero’ and the end of
the graph.

6. Checks to see that the value of the function at x = 4 is the same as the value of the
function at $time2. The Value here is &fpr f($time2).

7. Checks that the value of the function at point ‘notzero’ is equal to the value of the
function at x = $time3. The Value here is &fpr f(&fpr val(‘notzero’)).

Vector Rule

• “Index/Name” - This is an internal label for the rule. Something must be entered
here, and it must be different for each rule. This same value will be used to add a
conditional hint.

• “Vector” - The name of one of the vectors in the list of Elements above. Specifically,
the one you want to test.

• “Attached to object” - Enter the object(s) this vector should be attached to. For more
than one object, separate them by commas. If the vector should not be attached to
any object, leave this blank. In this case, an object is considered attached if its tail
OR its tip is in the vicinity of the object.

• “Not attached to object” - Enter the object(s) that this vector should be not be near.
For more than one object, separate them by commas. Particularly useful for distractor
vectors.

• “Tail/Tip (not) attached to object” - The same as the previous two statements, but
specific to only the Tail/Tip of the vector.

• “Length” - How long the vector should be.

• “Absolute error length” - How accurate the length must be to get the answer correct.

• “Angle” - What direction should the vector point. All values are measured in degrees,
counterclockwise starting at the positive x-axis. Values must be 0 ≤ θ < 360

• “Absolute error angle” - How accurate the angle must be to get the answer correct.

9 AUTHORING FUNCTION PLOT RESPONSE PROBLEMS 67

Vector Sum Rule

• “Index/Name” - This is an internal label for the rule. Something must be entered
here, and it must be different for each rule. This same value will be used to add a
conditional hint.

• “Comma-spearated list of vectors” - List all of the vectors that should be added up to
be tested.

• “Length” - How long the sum of these vectors should be.

• “Absolute error length” - How accurate the length must be to get the answer correct.

• “Angle” - What direction should the sum of these vectors point. All values are mea-
sured in degrees, counterclockwise starting at the positive x-axis. Values must be
0 ≤ θ < 360

• “Absolute error angle” - How accurate the angle must be to get the answer correct.

Custom Rule

Used to create rules that aren’t options using the other rules. The coding is done in Perl
and follows Perl syntax. Any variable written inside this rule will be recognized as normal
and any evaluation function can be used as well.

Available evaluation functions:

1. &fpr val(“label”)

2. &fpr f($x)

3. &fpr dfdx($x)

4. &fpr d2fdx2($x)

5. ($xs,$xe,$ys,$ye)=&fpr vectorcoords(“Name”)

6. ($x,$y)=&fpr objectcoords(“Name”)

7. &fpr vectorlength(“Name”)

8. &fpr vectorangle(“Name”)

Returning 1 is correct, while returning 0 is incorrect.
Example comparing the lengths of two vectors:

if (&fpr_vectorlength("Normal") < &fpr_vectorlength("Gravity"))

{return 1;}

else

{return 0;}

10 USING LIBRARIES 68

10 Using Libraries

Library (.library) files can hold an assortment of content. Library content is loaded into a
problem statement by using an <import> tag. For more information about the import tag,
see section 15.8.

10.1 Authoring Library Files

A LON-CAPA .library file can contain just a script block, or just response items, or both.
A LON-CAPA problem can import as many published library files as desired. A .library file
always starts with a <library> tag, and always ends with a </library> tag.

Storing entire scripts
Entire scripts can be stored in a library file. The entire script can then be imported into

a problem file.

Library file:

<library>

<script type="loncapa/perl">

@alpha=(’A’,’B’,’C’,’D’,);

$seed=&random(1,1000000,1);

@alpha=&random_permutation($seed,@alpha); #scramble order

$letter = $alpha[0]; #select first element

</script>

</library>

Problem file:

<problem>

<import id="15">randomletter.library</import>

<startouttext />The random letter is $letter.<endouttext />

<!-- other problem tags could go here -->

</problem>

Storing a portion of a script
A portion of a script, such as a large data array can be stored in a library file.

Library file:

<library>

<script type="loncapa/perl">

@alpha=(’A’,’B’,’C’,’D’,);

$seed=&random(1,1000000,1);

@alpha=&random_permutation($seed,@alpha); #scramble order

</script>

</library>

10 USING LIBRARIES 69

Problem file: (note the <script> tag is repeated and other script calculations can be done
using variables from the library file.)

<problem>

<import id="15">randomletter.library</import>

<script type="loncapa/perl">

$letter = $alpha[0];

</script>

<startouttext />The random letter is $letter.<endouttext />

<!-- other problem tags could go here. -->

</problem>

Storing a subroutine
Another use of a .library file is to define a subroutine which you plan to call in a number of

instances, e.g., (see notes below about browsing libraries in the repository to see the contents
of this subroutine)

/res/msu/raeburn/cleaneq.library

Here is some example XML problem code which makes a call to the &cleaneq() routine
defined in the library file, passing some arguments: $eq,‘x’,‘y’,‘z’ in the call to the routine.

<problem>

<import id="15">/res/msu/raeburn/cleaneq.library</import>

<script type="loncapa/perl">

$eq = "1x + 0y +-7z --3";

$eq2 = &cleaneq($eq,’x’,’y’,’z’);

</script>

<startouttext />Here is an example equation:

Without cleaneq: $eq

With cleaneq: $eq2<endouttext />

</problem>

Assigning random problems using libraries Libraries can be used to store alternative
parts of problems which are selected with the <randomlist> tag. The .library file hold the
all content that would normally appear inside the <part> tag.

<part id="11">

<randomlist show="1">

<import id="12">sample1.library</import>

<import id="13">sample2.library</import>

<import id="14">sample3.library</import>

</randomlist>

10 USING LIBRARIES 70

</part>

<part id="15">

<randomlist show="1">

<import id="16">sample4.library</import>

<import id="17">sample5.library</import>

<import id="18">sample6.library</import>

</randomlist>

</part>

Note: when using <randomlist> as shown above, all students will work every part of
the problem, but the actual problem statements will be different. Another option is to wrap
multiple <part> tags but then not all students will work all parts unless the value of ‘show’
equals the total parts wrapped. For more information see section 15.8.

Viewing the text contents of a library script block
If you click on a .library file when browsing the shared content repository, and the .library

file contains just a script block, then nothing will be displayed in the pop-up window.
The code is viewable if the author has enabled access to the source XML when publishing

a .library item that is pure script block. If that is done, then when a user checks the “Source
Available” checkbox when browsing the shared content pool, a link will be displayed for
items with available source code. Clicking the “Source Code” link for any such items will
open a pop-up which displays the content of the library file. It is good practice to enable
access to the source code when publishing any library that will be shared. Otherwise, users
cannot see it.

Viewing variables from a library script during testing
When viewing a problem in the problem testing mode of Authoring Space, you will see

a separate Script Vars link at the bottom of the testing area for each script block (either a
block included directly within the file, or a block included within a library file imported into
a problem). By clicking the respective link, you can view variable values from the respective
script.

Accessing submissions from a problem part loaded from a library
When *response items (e.g., *response is a wildcard such as optionresponce, stringre-

sponse, numericalresponse, etc.) are defined in a .library file, this results in an extra id item
in the identifier required in &EXT() functions, e.g., if a problem contains two parts with ids
of a and b respectively, and the id of the <import> for the .library is 15, and the *response
items have ids of 11 and 12 respectively, the most recent submissions could be retrieved with
the following &EXT() calls.

&EXT("user.resource.resource.a.15 11.submission");

&EXT("user.resource.resource.b.15 12.submission");

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 71

11 Authoring Adaptive/Conditional Hints

Hints are placed within <hintgroup></hintgroup> tags. The first part of the hint is the
condition, which includes a specification of the foil(s) and foil answer(s) required to trigger
the hint. The answers specified in the hint condition are compared with the user’s submission,
and if the condition is met, the hint action included in the conditional hint block will be
executed (for example this could be the display of a block of text). You can set multiple
hint conditions for a particular problem. Hint conditions are identified by a name. The
corresponding hint action includes this hint condition name in the “on” parameter. When a
hint condition evaluates to true, the corresponding hint action is triggered. Besides providing
hint actions within<hintpart on=”NAME”></hintpart> tags for each named (NAME) hint
condition, a hint can be designated for display if none of the conditional hints evaluate to
true. The default hint is not displayed if the conditions were met for any of the conditional
hints. The default hint action is included between <hintpart on=“default”></hintpart>
tags. There are five types of hint condition:

• Formula Hint condition

• Numerical Hint condition

• Option Response Hint condition

• Radiobutton Hint condition

• String Hint condition

The syntax used to describe the foil(s) and the foil answer(s) differ for the five types:

1. Formula Hint condition

The formulahint tag takes three parameters: answer, name, and samples. The “name”
is the unique name given to the hint condition. The formula answer for which you wish
to provide conditional is included in the answer parameter. The samples parameter
includes the points (or range of points) over which sampling of the student’s submit-
ted answer and the formula included in the formula hint answer parameter are to be
compared. The syntax is the same as used to specify sampling points in the samples
parameter of the formula reponse tag itself. The formula submitted by the student
is evaluated at the sample points for the hint and the calculated values are compared
with the corresponding values determined by evaluating the “hint” answer at the same
sampling points. A close correspondence between the two sets of values will trigger the
hint action specified in the <hintpart> tag.

<problem>

<script type="loncapa/perl" ># Enter computations here

$x1 = random(2,4,1);

$y1 = random(3,7,1);

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 72

$x2 = random($x1+1,9,1);

$y2 = random($y1+1,15,1);

$m = "($y2-$y1)/($x2-$x1)";

$b = "$y1-$m*$x1";

$answer = "$m*x+$b";

$answer =~ s/\+-/-/g;

$answer =~ s/-\+/-/g;

$inverted = "($x2-$x1)/($y2-$y1)";

$wrongans = "$inverted*x";

$wrongans =~ s/\+-/-/g;

$wrongans =~ s/-\+/-/g;

</script>

<startouttext /><p> What is the equation of the line

which passess through ($x1,$y1) and ($x2,$y2)?</p > y = <endouttext />

<formularesponse samples="x@-5:5#11" id="11" answer="$answer">

<textline size="25" />

<hintgroup>

<formulahint samples="x@-5:5#11" answer="$wrongans" name="inversegrad">

</formulahint>

<hintpart on="inversegrad">

<startouttext />You have inverted the slope in the question. Slope is

(y2-y1)/(x2 - x1) you have the slope as (x2-x1)/(y2-y1).<endouttext />

</hintpart>

</hintgroup>

</formularesponse>

</problem>

2. Numerical Response condition

The numericalhint tag takes four parameters: answer, name, unit and format. The
“name” is the unique name given to the hint condition. The numerical answer for
which you wish to provide conditional is included in the answer parameter. Student
submission of that answer in combination with the “unit” parameter in the hint con-
dition will trigger the hint action specified in the <hintpart> tag.

<problem> <startouttext /> A car travels 10 km in 10 min.

What is the speed of the car?<endouttext />

<numericalresponse format="1f" unit="km/hr" answer="60">

<responseparam description="Numerical Tolerance" default="2%"

type="tolerance" name="tol" />

<textline />

<hintgroup>

<numericalhint format="1f" unit="km/min" answer="100" name="speed">

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 73

<responseparam description="Numerical Tolerance" type="tolerance"

default="2%" name="tol" />

</numericalhin >

<hintpart on="speed">

<startouttext />You multiplied the distance by the time. Remember

speed = distance/time<endouttext />

</hintpart>

</hintgroup>

</numericalresponse>

</problem>

3. Option Response Hint condition

There are two types of option response hint conditions: one for standalone foils and one
for concept groups. In both cases the option hint tag includes two parameters: answer
and name for standalone foils, and concept and name for foils grouped together in a
concept group. For the answer parameter, the names and submitted values for each of
the foils that are being included in the hint condition are provided in a hash, i.e., in
the format: (’Foil1’=>’True’,’Foil2’=>’False’). In the case of a conditional hint for a
concept group, the format of the concept parameter is also a hash that links the name of
each concept group included in the hint condition to either ’correct’ or ’incorrect’ - e.g.,
<optionhint concept=”(’buoyancy’=>’correct’,’density’=>’correct’)” name=“fluids”
/> If ’correct’ is specified for a named concept then when the conditional hint is
evaluated answers for each of the foils selected by a student must be correct for the
hint action to be triggered. If anything other than ’correct’ is provided in the concept
hash in the optionhint tag then then students answers will be compared with the set
answers for the foils in the concept group and as long as at least one answer is incorrect
(i.e., the concept group was not correctly answered) then the corresponding hint action
will be triggered.

(a) optionresponse

<problem>

<startouttext />For each of the following rock types, indicate

whether or not the rock is a volcanic rock.<endouttext />

<optionresponse max="10" randomize="yes">

<foilgroup options="(’Yes’,’No’)" >

<foil location="random" value="No" name="schist">

<startouttext />Schist<endouttext />

</foil>

<foil location="random" value="No" name="marble">

<startouttext />Marble<endouttext />

</foil>

<foil location="random" value="Yes" name="basalt">

<startouttext />Basalt<endouttext />

</foil>

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 74

<foil location="random" value="No" name="gabbro">

<startouttext />Gabbro<endouttext />

</foil>

<foil location="random" value="No" name="granite">

<startouttext />Granite<endouttext />

</foil>

</foilgroup >

<hintgroup >

<optionhint answer="(’schist’=>’Yes’,’marble’=>’Yes’)"

name="metamorphic"/>

<optionhint answer="(’gabbro’=>’Yes’,’granite’=>’Yes’)"

name="plutonic" />

<hintpart on="metamorphic">

<startouttext />Schist and Marble are both examples of

metamorphic rocks as described on page 2 of the textbook.

<endouttext />

</hintpart>

<hintpart on="plutonic">

<startouttext />Granite and Gabbro are both examples of

igneous rocks that crystallized beneath the surface, i.e.,

they are plutonic rocks.

<endouttext />

</hintpart>

<hintpart on="default" >

<startouttext />Volcanic rocks are described on page 22

of the textbook.<endouttext />

</hintpart>

</hintgroup>

</optionresponse>

</problem>

(b) optionresponse with concept groups

<problem>

<startouttext />Choose the likely plate boundary type,

where you are most likely to encounter each of the following

geologic features or phenomena.<endouttext />

<optionresponse max="10" randomize="yes">

<foilgroup options="(’Convergent’,’Divergent’,’Transform’)" >

<conceptgroup concept="faulting">

<foil name="normal" value="Divergent">

<startouttext / >Normal faults<endouttext />

</foil>

<foil name="strike" value="Transform">

<startouttext / >Strike-slip faults<endouttext />

</foil>

<foil name="thrust" value="Convergent">

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 75

<startouttext />Thrust faults<endouttext />

</foil>

</conceptgroup>

<conceptgroup concept="earthquakes">

<foil name="deep" value="Convergent">

<startouttext / >Large Magntitude, deep and intermediate

focus earthquakes<endouttext />

</foil>

<foil name="shallow" value="Transform">

<startouttext / >Large magnitude, shallow focus earthquakes

<endouttext />

</foil>

<foil name="lowmag" value="Divergent">

<startouttext / >Low magnitude shallow focus earthquakes

<endouttext />

</foil>

</conceptgroup>

<conceptgroup concept="topography">

<foil name="gentle" value="Divergent">

<startouttext / >Broad area of elevated topography with a

central rift valley.<endouttext />

</foil>

<foil name="linear" value="Transform">

<startouttext / >A narrow linear fault zone with limited

topgraphic expression.<endouttext />

</foil>

<foil name="trench" value="Convergent">

<startouttext />A deep trench adjacent to a volcanic arc.

<endouttext />

</foil>

</conceptgroup>

<conceptgroup concept="volcanism">

<foil name="explosize" value="Convergent">

<startouttext />Explosive volcanism involving volatile-rich

viscous magma.<endouttext />

</foil>

<foil name="fluid" value="Divergent">

<startouttext />Non-explosive outpourings of low-viscosity

magma.<endouttext />

</foil>

<foil name="nonvolcanic" value="Transform">

<startouttext />No volcanic activity.<endouttext />

</foil>

</conceptgroup>

</foilgroup>

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 76

<hintgroup>

<optionhint concept="(’earthquakes’ => ’incorrect’)"

name="quakes" />

<optionhint concept="(’volcanism’ => ’incorrect’)"

name="volcactivity" />

<optionhint concept="(’topography’ => ’incorrect’)"

name="relief" />

<hintpart on="volcanism">

<startouttext />Volcanism requires a source of magma.

Magma can be generated by either a depression in the solidus

caused by an influx of volatiles, or by decompression melting.

Magma rich in volatiles tends to cause explosive volcanism.

<endouttext />

</hintpart>

<hintpart on="quakes">

<startouttext />Earthquakes require brittle failure, so there

is a correlation between the depth of earthquake foci and the

geotherm. The geotherm is depressed in subduction zones, and

elevated at mid-ocean ridges.<endouttext />

</hintpart>

<hintpart on="relief">

<startouttext />On a broad scale topography is an expression

of density variation, as embodied in the concept of isostasy.

Density variation in the earth is a function of temperature and

composition. Cold oceanic crust entering a subduction zone is

dense, whereas as magma is buoyant and of lower density.

<endouttext />

</hintpart>

<hintpart on="default">

<startouttext />The characteristics of plate boundaries are

described on page 52 of the textbook.<endouttext />

</hintpart>

</hintgroup>

</optionresponse>

</problem>

4. Radiobutton Hint condition

The radiobutton hint tag takes two parameters: answer and name. The name is the
name of the hint condition, and the answer is an array. The first element of the array
will be ’foil’; the remaining elements are the names of the foils that you require to have
been checked by the student for the hint to be displayed. For example, if you create
a radiobutton response problem with six foils named: granite, gabbro, gneiss, shale,
sandstone and schist, and you want your hint named: igneous to be displayed when
either granite or basalt had been checked your radiobutton hint would be as follows:

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 77

<radiobuttonhint answer="(’foil’,’granite’,’gabbro’)"

name="igneous"></radiobuttonhint>

In order to trigger display of this hint you also need to create a<hintpart></hintpart>
block that will include a textblock that contains the text of the actual hint.

<hintpart on="igneous">

<startouttext />This type of rock is composed of interlocking

crystals, a characteristic of igneous rocks.<endouttext />

</hintpart>

The complete radiobutton response would look as follows:

<problem>

<startouttext />

Which of the following is a sedimentary rock?

<endouttext />

<radiobuttonresponse max="3" randomize="yes">

<foilgroup>

<foil location="random" value="false" name="granite">

<startouttext />

Granite

<endouttext />

</foil>

<foil location="random" value="false" name="gabbro">

<startouttext />

Gabbro

<endouttext />

</foil>

<foil location="random" value="false" name="schist">

<startouttext />

Schist

<endouttext />

</foil>

<foil location="random" value="false" name="gneiss">

<startouttext />

Gneiss

<endouttext />

</foil>

11 AUTHORING ADAPTIVE/CONDITIONAL HINTS 78

<foil location="random" value="true" name="shale">

<startouttext />

Shale

<endouttext />

</foil>

<foil location="random" value="true" name="sandstone">

<startouttext />

Sandstone

<endouttext />

</foil>

</foilgroup>

<hintgroup>

<radiobuttonhint answer="(’foil’,’granite’,’gabbro’)"

name="igneous" ></radiobuttonhint>

<radiobuttonhint answer="(’foil’,’gneiss’,’schist’)"

name="metamorphic"></radiobuttonhint>

<hintpart on="igneous">

<startouttext />This type of rock is composed of interlocking

crystals, a characteristic of igneous rocks.

<endouttext />

</hintpart>

<hintpart on="metamorphic">

<startouttext />This type of rock is composed of oriented crystals, a

characteristic of foliated metamorphic rocks.<endouttext />

</hintpart>

</hintgroup>

</radiobuttonresponse>

</problem>

5. String Hint condition

The radiobutton hint tag takes two parameters: answer and name. The name is the
name of the hint condition, and the answer is a text string. The type parameter allows
you to choose between case sensitive, case insensitive, and case insensitive in any order.
A simple example is shown below.

<problem>

<startouttext />Which US state has Lansing as its capital?<endouttext />

<stringresponse answer="Michigan" type="ci">

<textline size="20" />

<hintgroup>

<stringhint answer="wisconsin" type="cs" name="wisc">

</stringhint>

<stringhint answer="minnesota" type="cs" name="minn">

12 PUBLISHING YOUR RESOURCES 79

</stringhint>

<hintpart on="wisc">

<startouttext />The state capital of Wisconsin is Madison.<endouttext />

</hintpart>

<hintpart on="minn">

<startouttext />The state capital of Minnesota is St. Paul.<endouttext />

</hintpart>

<hintpart on="default">

<startouttext />The state you are looking for is also known as the

’Great Lakes State’<endouttext />

</hintpart>

</hintgroup>

</stringresponse>

</problem>

12 Publishing Your Resources

In order to make the content you’ve created available for use in courses, you must publish
your content. LON-CAPA provides an easy interface for publishing your content pages,
problem resources, and sequences. You can specify title, author information, keywords, and
other metadata. LON-CAPA uses this metadata for many things, and it’s important to fill
the metadata out as accurately as possible.

12.1 What is Metadata?

Metadata is data about data. Metadata can often be thought of as a label on some bit
of information that can be useful to people or computer programs trying to use the data.
Without metadata, the person or computer trying to use the original information would have
to guess what the original data is about.

When resources are published at least title, subject and keywords should be provided so
that the resource could be found easily.

For example, if you create a problem and neglect to say in the title or subject of the
problem what it is about, then a human who wants to use that problem would have to read
the problem itself to see what it was about. This is much more difficult than just reading
a title. A computer trying to do the same thing would be out of luck; it is too stupid to
understand the problem statement at all.

Another example of metadata is the <title> tag of a web page, which usually shows
up in the title bar of the browser. That is information about the web page itself and is not
actually part of the web page. People use the title information when they bookmark a page.
Search engines use it as a clue about the content of the web page.

12 PUBLISHING YOUR RESOURCES 80

12.2 Publishing a Resource

To publish a resource, log in and choose your Author role. You should see something like
the resource listing of the figure 4. Use the Actions dropdown to select Publish for the
resource you wish to publish. You will get a metadata screen that should look something like
the “Publishing Metadata Screen” figure. Fill out the form. If you are creating resources
that may be used in several courses, you should talk with the other authors and establish
some sort of standard title and subject scheme in advance.

Language is the language the problem is written in. Publisher/Owner is the LON-
CAPA user who owns the problem.

Keywords and Abstract are more information about the problem.
The Keywords are words that are strongly connected to your problem; for instance a

physics problem about a pulley might include “pulley” as a key word. LON-CAPA pulls
out words used in the text of the resource for you so you can just click on their check boxes
to make them keywords. Additional keywords allows you to add any keyword to your
problem that are not actually in the problem. For instance, on that same problem a physicist
might add the keyword “statics”, even though it doesn’t appear in the original problem,
because Physics uses that as a classification of problem type. Additional Keywords are
also useful when publishing graphics.

You need to set the copyright and distribution permissions in the
COPYRIGHT/DISTRIBUTION drop-down. This setting controls who is allowed to
use your resource as follows:

• System Wide - can be used for any courses system wide is the default. The
content can be used for any course within the network, regardless of the domain.
Instructors all over the world can find your content and use it in their courses. Once
an instructor has selected a resource, the students in the course can have access to it.

• Domain - Limited to courses in the domain published means that only courses
running in the same domain as you can use your content.

• Private - visible to author only is not supported anymore. Use Customized right
of use instead.

• Public - no authentication required means anyone can find and use the resource
- even without being logged in to the system.

• Customized right of use means that access to the resource is controlled by a separate
Custom Rights file. This file needs to be specified during publication. You can edit
a Custom Rights file in your author space, and need to publish it like any other file.
Any number of your resource can point at the same Custom Rights file - if you want
to change access rights for all of them, you just need to change and re-publish this one
file.

Not all of these choices may be visible, depending on the nature of the resource.
Now when you click Finalize Publication, your resource will be published and usable

(unless you set the distribution to “private”).

12 PUBLISHING YOUR RESOURCES 81

Figure 22: Publishing Metadata Screen

13 PRINTING YOUR RESOURCES 82

If you’re following this as a tutorial, publish your resources so we can use them in the
next section.

13 Printing Your Resources

13.1 Printing from Authoring Space

To print a resource, do the following:

1. The icon will only be accessible when you are looking at one of your resources for
your course.

2. Click to access the Print Helper, which will help you create a PDF document.

The Print helper will guide you through the process of preparing a PDF document of the
resource. If you see error message when trying to prepare a PDF file, then you will need to
contact the author of the problem which contains that printing error.

Printing involves a translation of your XML file into LaTeX and from there to PDF.
Some of the XML tags have a set of special print options, see 13.3. Sometimes translations
require special considerations, see 13.4.

13.2 Printing a Subdirectory of Problems

Authors or co-authors will typically choose to organize their authoring spaces into sub-
directories. To generate a PDF containing all problems in an entire directory or sub-directory,
follow the steps below:

1. First, select one of the problems to view in the sub-directory to be printed.

2. Click Print in the Functions menu if using the Inline menu, or the PRT buttom
on the Remote Control.

3. Select the option to print ‘Selected Problems’ from current subdirectory.’

4. Optionally, choose to print with Answers. You can choose to print with either the
default two column output or with one column.

5. Click the Next button.

6. On the next screen, select which problems you want to print by either clicking on one
of the Select buttons or individually checking which problems you want to select.

7. Click the Next button.

8. As long as there were no errors in any of the problems, you should now see a link to a
PDF file that you can download and view.

13 PRINTING YOUR RESOURCES 83

If an error occurs with just one of the problems then printing of all selected problems in the
sub-directory will fail. LON-CAPA will make a guess at which problem(s) had errors. You
will need to troubleshoot and fix those problems before the entire directory can be printed.
Information about common print errors is available at 13.4.

13.3 Tips for Improving Print Output

Here you can find some useful tips how to make your printing output looking prettier.
Print output oriented attributes of standard HTML/LON CAPA tags

• 13.3.1 <h1>-<hN> TeXsize attribute

• 13.3.1 <basefont> TeXsize attribute

• 13.3.1 TeXsize attribute

• 13.3.2 <hr> TeXwidth attribute

• 13.3.2 <table> TeXwidth attribute

• 13.3.3 <table> TeXDropEmptyColumns attribute

• 13.3.2 <td> TeXwidth attribute

• 13.3.2 <th> TeXwidth attribute

• 13.3.4 TeXwidth attribute

• 13.3.4 TeXheight attribute

• 13.3.4 TeXwrap attribute This attribute controls how the generated LaTeX
attempts to wrap text around figures when a horizontal alignment has been requested
in the IMG tag. Unfortunately, LATEXis not really built to do this and there are no
known perfect solutions. This attribute has two possible values:

– texwrap - (the default) uses the texwrap environment to attemp to get text to
wrap around the picture. This requires either a “left” or “right” alignment, and
works well in most cases.

– parpic - uses the picins package \parpic to attempt to get text to wrap around the
image. This method places the remainder of the text of the paragraph containing
the picture to the left or right of the picture. This scheme has two drawbacks: If
the remainder of the paragraph text is insufficient to fill the area to the side of the
image, the text from the following paragraph will run through the image, parpic
also seems to not do a good job of honoring the end of the page, and images can
spill below the page footers generated by Lon-CAPA.

13 PRINTING YOUR RESOURCES 84

13.3.1 TeXsize Attribute

TeXsize attribute in <h1>-<hN>,<basefont>, and tags declares the size of LaTeX
fonts used in printing.

Possible values of TeXsize attribute:

tiny smallest

scriptsize very small

footnotesize smaller

small small

normalsize normal
large large
Large larger

LARGE even larger
huge still larger
Huge largest

Note, that all parameters coincide with standard LaTeX commands for changing font
size though you do not escape them.

Examples:

<basefont size="4" TeXsize="Large" />

<h1 align="center" TeXsize="Huge">

13.3.2 TeXwidth Attribute

TeXwidth attribute allows you to specify the width of

• the table in <table> tag

• the table cell in <td> or <th> tags

• the length of the line in <hr> tag

You can use the following units:

mm
cm =10 mm
in =25.4 mm
pt =0.35 mm
pc =4.22 mm

Examples:

<hr TeXwidth="2 cm">

<td TeXwidth="1 in">

13 PRINTING YOUR RESOURCES 85

13.3.3 TeXDropEmptyColumns Attribute

TeXDropEmptyColumns attribute allows you to supress printing of empty columns in
table. This option is useful when you have deal with big tables (very often nested) with a lot
of empty columns. Situation is typical in chemistry where tables are used for visualization
of chemical reactions.

Example:

<table TeXDropEmptyColumns="yes">

13.3.4 Image TeX Attributes

• Image Url contains the URL of the image to be inserted in the problem. You may
enter a URL or click “Select” to choose an image that has already been uploaded to
your authoring space, or click “Search”

• Description contains a textual description of the image. If the image cannot be rendered
by the target browser, this description is displayed instead.

• width (pixel) allows you to set the width of the image, in pixels, as it will be displayed
in a web browser.

• height (pixel) allows you to set the height of the image, in pixels, as it will be displayed
in a web browser.

• TeXwidth (mm) Allows you to set the width of the image, in mm, as it will be rendered
into the LATEXdocument used to print the problem.

• TeXheight (mm) Allows you to set the height of the image, in mm, as it will be rendered
intot he LATEXdocument used to print the problem.

• TeXwrap Allows you to select how the LATEXdocument will attempt to wrap text
around a horizontally aligned image (See Alignment below).

parbox \newline and \parbox will be used to place the image. This method ensures
that text will not be wrapped on top of the image, however very little text will
appear next to the image itself.

parpic The picins package \parpic command will be used to place the image. This
will wrap the remainder of the paragraph containing the picture around the image.
If, however, there is insufficient text to fill the space to the left or right of the
image, the next paragraph may be wrapped on top of the image. In addition,
\parpic does not always honor the end of the page, causing the image to extend
below the page footer.

• Alignment Specifies the alignment of the image relative to the enclosing text paragraph:

bottom The image will be aligned so that its bottom will be at the baseline of the
surrounding text.

13 PRINTING YOUR RESOURCES 86

middle The image will be aligned so that its center-line will be at the baseline of the
surrounding text.

top The image will be aligned so that its top will be at the baseline of the surrounding
text.

left The image will be placed so that it is at the left of the surrounding text. The
surrounding text will fill in the region to the right of the image.

right The image will be placed so that it is at the right of the surrounding text. The
surrounding text will fill in the region to the left of the image.

13.3.5 TeX Type Attribute

TeXtype attribute is responsible for the definition of the type of LaTeX list environment
used during printing of available options. Possible values of this attribute:

TeXtype attribute is responsible for the definition of the type of LaTeX list environment
used during printing of available options. Possible values of this attribute:

value example of list
1 [1.] First Item

[2.] Second Item
[3.] Third Item

A [A.] First Item
[B.] Second Item
[C.] Third Item

a [a.] First Item
[b.] Second Item
[c.] Third Item

i [i.] First Item
[ii.] Second Item
[iii.] Third Item

Examples:

<radiobuttonresponse TeXtype="1">

<radiobuttonresponse TeXtype="A">

13.3.6 TeX Itemgroup Width Attribute

TeXitemgroupwidth attribute allows you to specify the width of table with items for
matching. The value of this attribute defines the width in percents with respect to text line
width.

<matchresponse TeXitemgroupwidth="40%">

13 PRINTING YOUR RESOURCES 87

13.3.7 TeX Layout Attribute

TeXlayout attribute governs the way how available options are displayed when printed -
either vertically (attribute value - ”vertical”) or horizontally (attribute value - ”horizontal).

Examples:

<optionresponse TeXlayout="horizontal">

<optionresponse TeXlayout="vertical">

13.4 Troubleshooting PDF Errors

When you print a LON-CAPA resource, the XML of your resource is translated into LaTeX.
The LaTeX is then processed and turned into a PDF document which can be displayed with
your browser’s Acrobat plugin and subsequently printed.

There are several problems that crop up both due to limitations in the XML to LaTeX
translation and due to differences in the model used by web browsers to render HTML and
LaTeX to compose print pages. This document provides information about some of these
problems and, where possible, solutions, and tricks to work around them. If you have a
printing trick or a problem and would like to report it, please go to http://bugs.lon-capa.org
and register a bug report.

General information about printing within LonCAPA is also available in section 13.1.
Some types of problems that may occur include:

The print rendition of some Perl functions looks ugly
In particular these functions are:

• &prettyprint

• &dollarformat

• &xmlparse

• &chemparse

To make these two functions work correctly within the print translator, it is necessary to
wrap them within a <display> tag. For example:

<p>

If I had <display>&prettyprint(100,’$2f’)</display>

</p>

Note that the <display> tags must be tightly wrapped around the function call or you
will get a syntax error in web presentation mode. For additional information about cases
where you must use <display>, see “Variables with tags don’t print correctly” below.

Image placement and alignment and text wrapping is wrong
Unfortunately this is due to a large difference between the LaTeX and HTML page layout

model. In HTML images are placed exactly where you ask them to be placed. In LaTeX,

14 AUTHORING MAPS: SEQUENCES AND PAGES 88

images are considered floats, which LaTeX will place for you. Some of the common html
tricks, using tables e.g. to control text wrapping around figures, will not always work in
print mode; especially if the text is to the right side of the figure in the table.

The alignment choice affects whether or not the print rendering engine attempts to get
text to wrap around the image. With align="right" or align="left", the print rendering
engine attempts to use the wrapfigure environment to place text around the figure at the
appropriate side. If a figure is in a table, then the print engine, by default, the print engine
will use wrapfigure, set the alignment to “right” unless you override it. Otherwise, the
default alignment is “bottom” as it is for html, and no wrapping will occur.

\parpic style wrapping is also available by specifying TeXwrap="parpic" in the
tag. In some limited casese this gives a better result.

Other print specific tag attributes are available (see section 13.3).

Variables with tags don’t print correctly
If a variable contains XML, in general it is necessary to force the XML parser to make

a pass over the contents of the contents of the variable prior to rendering the section of the
resource that contains that substitution. When output, those variables must be bracketed
inside of <display> </display> tags. For example:

<problem>

<script type="loncapa/perl">

$a = &xmlparse(’
’);

</script>

<startouttext />

<p>This is a break <display>$a</display> and then some more text</p>

<endouttext />

</problem>

Without the xmlparse call and the display tag bracketing the variable, this problem will
display on the web just fine, but print incorrectly.

14 Authoring Maps: Sequences and Pages

In order to create a useful course, we need to arrange our raw materials so that students can
use them.

14.1 Authoring Sequences

A sequence is a series of resources that can be navigated using the NAV remote control
button, or by using the arrow keys on the remote control.

To create a Sequence resource, create a new resource as described in the ’Authoring
Content in LON-CAPA’ section (5). This is a “sequence” resource so the URL must end in
“.sequence”. After you enter in the URL ending in “.sequence”, you should see a screen as
in figure 23. You can use either the advanced editor or the simplified editor.

14 AUTHORING MAPS: SEQUENCES AND PAGES 89

Figure 23: Map Editor Selection

Figure 24: Simple Map Editor

14.2 Authoring a Simple .sequence With The Simple Editor

After creating a new .sequence resource and getting the editor selection prompt (as in the
“Simple Map Editor” figure), click the Simple Edit button to get to the simple map editor,
which appears in the figure.

The Simple Editor can create .sequences and .pages which are linear, which means they
have no branches or conditions.

On the right side of the simple editor is the Target, which represents the map you are
currently building. On the left side is the Import area, which represents a work area you
can use for your convenience to load and manipulate resources you may wish to include in
your map. Using the three buttons in the middle of the screen, you can cut things out of the
Target (top button), copy from the Target to the Import (middle button), and copy from
the Import to the Target (bottom button).

You can do a Group Search and a Group Import on both sides of the screen. A Group
Search allows you to run a search, then import selected results from that search either directly
into your Map or into your Import space. Checkboxes will appear next to the results in the
Group Search, and you can click the resources you wish to add to your map in the order that
you want them added. After you select the resources, you will be presented with a screen
that allows you to change their order. You will then be able to import the selected resources

14 AUTHORING MAPS: SEQUENCES AND PAGES 90

Figure 25: Initial Map Editor

and work with them.
A Group Import works in a similar fashion, but allows you to use the LON-CAPA network

browser to select your resources.
On the Import side, you can also browse for another Map, and load the resources used

in that map into your Import workspace. You can also discard the selected resources, clear
all the resources, and view the selected resources by using the buttons on the Import side of
the screen.

Both list boxes support standard multi-select mechanisms as used in your OS.

14.3 Authoring a Simple .sequence With The Advanced Editor

After creating a new .sequence resource and getting the editor selection prompt (23), click
the Advanced Edit button to get to the advanced map editor. You should see the initial
map editor as shown in the “Initial Map Editor” figure. Note there are two windows: One
is the workspace and one is a secondary window which will contain information as you add
resources.

Click the Start box. You’ll see what is shown in the “After clicking Start in the Map
Constructor” figure. Click Link Resource in the secondary window then click on the
Finish box. After that, click Straighten. You should see something looking like the
“Straightened Map” figure. This creates a simple map that flows from beginning to
end.

To insert a resource into the flow, click the black line with two arrows, seen between the
Start and Finish boxes in the “Straightened Map” figure. In the secondary window,
you will see something like the “Inserting a Resource” figure. Click Insert Resource
Into Link. A new resource box will appear in the link. Click the resource, which will
have the label Res.

14 AUTHORING MAPS: SEQUENCES AND PAGES 91

1.

Figure 26: After clicking Start in the Map Constructor

Figure 27: Straightened Map

14 AUTHORING MAPS: SEQUENCES AND PAGES 92

2.

Figure 28: Inserting a Resource

3. Click Browse and the Network Directory Browser will appear, as shown in the
“Network Directory Browser” figure. Press the SELECT button that is next to the
resource you want to place in the chosen resource box. Once you’ve done that, if you
look back at the window that popped up when you clicked on New Resource, you’ll
see something like the “Resource Chosen” figure. You can type the URL and Title
into the secondary window if you prefer, following the format you see when you’ve
successfully browsed to a resource. After you click Save Changes, your changes will
be set and the icons for the resource will appear in the Res box, as shown in figure
30. Click Save Map in the bar above your map to save the map.

Clicking on the left icon for a resource will open a new browser window with an
informational page about that resource. Clicking on the right icon for a resource will
open a new browser window and take you to the rendering of that resource.

4. Repeat steps two and three for as many resources as you’d like to bind together into
one page. You can insert the new resources anywhere you’d like.

5. When you are done adding resources, click the Save Map link to save the map.

In addition to manually adding in resources, the Advanced Editor also has the ability to
import resources in the same way that the Simple Editor can: From a LON-CAPA network
browser window, from a Group Search, or from another Map.

The Advanced Editor has many more capabilities which you can explore.

14.4 Adding links and conditions

Any resource can potentially be linked to any other, making it possible to provide a non-linear
learning experience. Once a few resources have been added to a sequence in the advanced
editor, links can be added by simply clicking on a resource, using the “Link Resource” link,
and clicking on another resource. The map display will update to take into account the new

14 AUTHORING MAPS: SEQUENCES AND PAGES 93

Figure 29: Network Directory Browser

Figure 30: Resource Chosen

14 AUTHORING MAPS: SEQUENCES AND PAGES 94

link. By default, all links out of a resource will be suggested to students switching to the
next resource in the sequence, but it is possible to reduce the options with conditions.

A condition for a link can be added by clicking on a link near a resource (in a colored
area) and typing the condition in the pop-up. Conditions are using the Perl syntax, and are
evaluated as booleans. Three different outcomes are possible for a given condition:

• Recommendation if true: displays the link only if the condition is true

• Blocking this link if false: hides the link if the condition is false

• Blocking other links if true: hides the other links if the condition is true

The &EXT function is used to get user data. It takes 2 parameters: one to specify the
problem part and requested data, and one to specify the sequence resource. Resources in the
sequence have to be named before being used with &EXT. This is done by adding a mapalias

parameter to the resource. To do that, click on a resource, click the Set Parameters link,
change the value for the parameter part mapalias field, click on the Set checkbox, then
click on the Set button.

Here is an example:
&EXT(’user.resource.resource.0.tries’,’test’) > 2

This condition will be true if the user has more than 2 tries for the problem with a mapalias

parameter set to “test”, in part 0 (which is the part id used when a problem has no part).
Here are some &EXT parameters that are particularly useful for advanced sequences:

• awarded: ’’ or a floating point number between 0 and 1 inclusive, that is the percent-
age of the weight for this problem

• solved: status of the problem, 1 if the answer was correct, can also be one of the follow-
ing strings: ’correct by student’, ’correct by scantron’, ’credit attempted’,
’incorrect attempted’, ’ungraded attempted’, and the empty string ’’

• tries: number of tries used

• award: detailed award determined by how the most recently graded part was graded;
possible values:
’EXACT ANS’, ’APPROX ANS’, ’NO RESPONSE’, ’EXTRA ANSWER’,
’MISSING ANSWER’, ’WRONG NUMBOXESCHECKED’, ’ERROR’,
’TOO LONG’, ’WANTED NUMERIC’, ’MISORDERED RANK’,
’EXCESS FILESIZE’, ’FILENAME INUSE’, ’INVALID FILETYPE’,
’SIG FAIL’, ’UNIT INVALID INSTRUCTOR’, ’UNIT INVALID STUDENT’,
’UNIT FAIL’, ’UNIT IRRECONCIBLE’, ’UNIT NOTNEEDED’,
’NO UNIT’, ’COMMA FAIL’, ’BAD FORMULA’, ’NOT FUNCTION’,
’WRONG FORMAT’, ’INTERNAL ERROR’, ’INCORRECT’, ’SUBMITTED’,
’SUBMITTED CREDIT’, ’ANONYMOUS’, ’ANONYMOUS CREDIT’, ’DRAFT’,
’ASSIGNED SCORE’, ’’

• status (for bridge task): one of the strings: ’review’, ’ungraded’, ’fail’, ’pass’

14 AUTHORING MAPS: SEQUENCES AND PAGES 95

Figure 31: Creating a New Course

Note that in Perl an undefined value, the number 0, the empty string ’’, the string ’0’ and
an empty list will be evaluated as false, while anything else will be evaluated as true. When
a numeric operator like < or == is used, strings are converted into numbers, or the number
0 if the conversion is not possible. Use the eq operator to check string equality.

14.5 Page Maps

Creating a Page map is the same as creating a Sequence map, except that when choosing
the name of the resource, the URL will end with “.page”. This way, all resources you add in
the map editor will appear on one page together. Pages are often used to connect problems
in a homework set.

14.6 Courses: Top-level Sequence

In order to view sequences, they need to be part of a course.
Courses have a Top-level map which defines the whole course. This Top-Level map will

often contain maps corresponding to homework assignments, chapters, or units. To view
your maps, you will need to make them part of a course.

When a course is first created a top-level map will be generated. This top-level map
will be an “internal” sequence file which is managed using the Course Editor. It is also
possible to set a course’s Top-Level map to be a published sequence, but that is very rarely
done. In that case the Course Editor would no longer be used to manage course content.

In the typical case a course’s “Main Content” area corresponds to the top-level map, an
the Course Editor is used to add, remove or re-order content within it. Users assigned the
role of Course Coordinator in a course will upload content or import published content into
the course. Folders and sub-folders can be created using the Course Editor, and content
uploaded/imported into them.

The content can include published maps (both sequences and pages). Sequences will
appear as folders in the Course Contents listing. See the Course Coordination manual for
more informtion.

Your Domain Coordinator may have assigned you rights to request courses. If so, visit
your roles screen, and select the “Request course” item in the Functions menu. If not, you
should contact your Domain Coordinator to ask about course creation.

15 TAGS USED IN XML AUTHORING 96

15 Tags Used in XML Authoring

LON-CAPA uses a syntax similar to XML and HTML. Here are some basic style guides if
you do not know the syntax:

XML http://www.w3schools.com/xml/xml syntax.asp

HTML http://www.w3schools.com/html/html5 syntax.asp

Compared to the XML syntax, the LON-CAPA language does not require a prolog at
the beginning, and does not require encoding special characters within script elements.

Compared to the HTML syntax, the LON-CAPA language does not require a DOCTYPE,
but requires closing all elements. Problem documents do not use the html and body tags.
Aside from that, most HTML elements can be used in LON-CAPA documents.

LON-CAPA uses a very simple subset of the XML syntax and there is a lot you do not
need to know, including but not limited to: CDATA, DTDs, namespaces, and stylesheets. If
you search for XML resources on the Internet yourself, you do not need to read about those
things to learn how LON-CAPA uses XML/HTML for problems.

15.1 Response Tags

Response tags are the tags used by LON-CAPA to indicate what a student should enter into
the system, such as a string answer, clicking on a picture, typing in a formula, etc. They are
the core tags of homework problems; a homework problem without at least one response tag
is not really a homework problem.

Simple examples of the more complicated tags are available as templates for you to choose
from when creating a new problem in your Authoring Space.

15.1.1 numericalresponse

numericalresponse implements a numerical answer, it needs an internal textline for the
the response to go in. It checks all styles of numerical supported in CAPA. The answer can
be specified with the answer attribute or with an answergroup.

Possible attributes are:

• answer: specifies the correct answer, may be either a perl list or scalar

• unit: optional, specifies unit of correct answer, CAPA style

• incorrect: Incorrect Answers. When switched into exam (“bubble sheet”) mode,
LON-CAPA usually create wrong answers automatically. To specify wrong answers
yourself, you need to provide an array of incorrect values in this attribute. You need to
provide at least as many incorrects as 1 less than the number of bubbles on the exam.
You can provide more if you want to.

• format: string to format the number displayed as the answer. See num in 15.6 for
examples.

15 TAGS USED IN XML AUTHORING 97

• preprocess: optional, pre-process Perl subroutine

Hints can be specified with numericalhint.

15.1.2 imageresponse

imageresponse implements a image-click answer. imageresponse tags should contain a
foilgroup tag, which contain foil tags. Each foil tag can contain:

• image: required. The delimited text should correspond to a published image resource.
Example: . The follow-
ing image formats are recommended - gif, jpg or png. Other formats may work, but
there may be printing or display issues. The image should only appear once per foil.

• rectangle: required. The delimited text specifies a rectangular area that is correct,
specified as (x1,y1)-(x2,y2), where x1, x2, y1, and y2 are number corresponding to
the x and y coordinates of two corners that define a rectangle which specifies where
the right answer for this foil is located on the image. For example, (0,0)-(100,200)
will specify that a rectangle 100 pixels wide and 200 pixels tall, situated in the upper
left of the image, is correct. At least one rectangle is required; multiple rectangles may
be specified.

• text: required. The delimited text is printed before the image is shown on the screen.
This text is typically used to describe to the student what they are expected to click
on.

Possible attributes for imageresponse are:

• max: the maximum number of foils displayed at once (if more are specified, some will
not be displayed)

15.1.3 optionresponse

optionresponse implements a “select from these choices” style question. The choices are
specified by the instructor and use the foil structure tags as described in 15.3, with this
additional addition:

• foilgroup: required to have an options attribute which should be a perl list of possible
options for the student.

Possible attributes for optionresponse are:

• max: the maximum number of foils displayed at once (if more are specified, some will
not be displayed)

• randomize: set to yes to randomize the order of foils when displayed

• TeXlayout: set to horizontal to display foils horizontally for printing

Hints can be specified with optionhint.

15 TAGS USED IN XML AUTHORING 98

15.1.4 radiobuttonresponse

radiobuttonresponse implements a true/false question with one correct answer. It uses
the foil structure tags as described in 15.3, but the value of a foil can only be true, false,
or unused. It is possible to use a Perl variable for the value attribute, as long as it can only
have a valid value.

Several true foils can be specified, but only one (randomly chosen) will be displayed.
Possible attributes for radiobuttonresponse are:

• max: the maximum number of foils displayed at once (if more are specified, some will
not be displayed)

• randomize: set to yes to randomize the order of foils when displayed

• direction: set to horizontal to display foils horizontally

Hints can be specified with radiobuttonhint.

15.1.5 dataresponse

dataresponse is an advanced type of response tag that implements a simple data storage
and needs an input tag, such as textline, to work correctly. Possible attributes are:

• name: internal name for the value. It will have the part id and response id added to
it.

• type: type of data stored in this response field. It should be one of the types supported
by parameter.html

• display: string that will be used to describe the field when interfacing with humans.

15.1.6 externalresponse

externalresponse is an advanced type of response tag that implements the ability to have
an external program grade a response. It expects either a textline or textfield inside the
tag. Possible attributes are:

• url: url to submit the answer form to. It does not need to be a LON-CAPA machine.

• answer: data to post in the form element LONCAPA correct answer to the remote
site.

• form: hash variable name that will be submitted to the remote site as a HTTP form.

The form sent will consist of

• LONCAPA student response full text of what the student entered in the entry
field

• LONCAPA correct answer contents of the answer attribute

15 TAGS USED IN XML AUTHORING 99

• LONCAPA language specified language encoding of the requesting resource

• all items in the form attribute if any of these clash with the above, the above
values will overwite the value in the form attribute

The response of the remote server needs to be in XML as follows:

• loncapagrade: takes no attributes, but must surround the response.

• awarddetail: required. The delimited text inside must be one of the detailed results
that appears in the data storage documentation. CVS:loncapa/doc/homework/datastorage,
look for resource.partid.responseid.awarddetail.

• message: optional message to have shown to the student.

Example:

<loncapagrade>

<awarddetail>INCORRECT</awarddetail>

<message>

A message to be shown to the students

</message>

</loncapagrade>

15.1.7 Attributes For All Response Tags

These response tag attributes are used by all response tags:

• id: If this isn’t set, it will be set during the publication step. It is used to assign
parameter names in a way that can be tracked if an instructor modifies by hand.

• name: optional. If set, it will be used by the resource assembly tool when one is
modifying parameters.

15.2 responseparam and parameter

If responseparam appears, it should be inside of a response tag. It defines an externally
adjustable parameter for the question, which the question can then use to allow other users
to customize the problem for their courses without changing the source code of the problem.
Possible attributes are:

• default: required. Specifies a default value for the parameter.

• name: required. Specifies an internal name for the parameter.

• type: required. Specifies the type of parameter: tolerance, int, float, string, or
date. Additional constraints for the type can be specified by adding an underscore and
the constraint name to the type, for instance int pos means strictly positive integer.

15 TAGS USED IN XML AUTHORING 100

• description: string describing the parameter. This is what is used to talk about a
parameter outside of a problem.

parameter is exactly the same as responseparam, but should appear outside of a response
tag.

15.3 Foil Structure Tags

All response tags that implement a foil structure have an optional arg of max that controls
the maximum number of total foils to show.

• foilgroup: required. Must surround all foil definitions. Only the optionresponse
foilgroup can have attributes.

• foil: required. The foil is defined by what is delimited by the foil tag.

• conceptgroup: optional. Surrounds a collection of foil. When a problem is displayed,
only one of the contained foil is selected for display. It has one required attribute
concept.

15.4 Hint Tags

All of these tags must appear inside a response tag:

• hintgroup: Tag that surrounds all of a hint.

• hintpart: Tag to implement conditional hints. It has a required argument on. When
a hint tag named the same as the on attribute evaluates to be correct, the hintpart
will show. If no other hintpart is to show then all hintparts with an on value set to
“default” will show.

• numericalhint: It has all the arguments that numericalresponse does, and the
required attribute name which should be set to the value of which hintpart will be
shown.

• stringhint: It has all the arguments that stringresponse does, and the required
attribute name which should be set to the value of which hintpart will be shown.

• formulahint: It has all the arguments that formularesponse does, and the required
attribute name which should be set to the value of which hintpart will be shown.

• optionhint: The required attribute name should be set to the value of which hint-
part will be shown.

• radiobuttonhint: The required attribute name should be set to the value of which
hintpart will be shown, and the attribute answer should be at least a two element
list: first the type (foil or concept) and then either the foil name(s) or the concept
string(s), e.g., “(‘foil’,‘greaterthan’,‘equal’)” if the condition should be triggered by the
foils named “greaterthan” or “equal.”

15 TAGS USED IN XML AUTHORING 101

• customhint: The required attribute name should be set to the value of which hint-
part will be shown. Define the hint condition within an answer block inside of the
customhint block. The condition is defined like how an answer is defined in cus-
tomresponse where you need to return EXACT ANS to indicate when customhint
criteria are met.

15.5 Input Tags

This group of tags implements a mechanism for getting data for students. They will usually
be used by a response tag.

• textfield: Creates a large text input box. If data appears between the start and end
tags, the data will appear in the textfield if the student has not yet made a submission.
Additionally, it accepts two attributes: rows and cols, which control the height and
width of the text area respectively. It defaults to 10 rows and 80 columns.

• textline: Creates a single line input element. It accepts one attribute size which
controls the width of the textline, defaulting to 20.

Both the textfield and textline input tags support a spellcheck attribute. If present,
the text the user types is spellchecked when focus leaves the input field. The value of this
attribute specifies the language in which the spellcheck is performed. e.g. <textfield
spellcheck=’en’ /> creates a text field that is spellchecked in English while <textline
spellcheck=’de’ /> creates a text line that is spellchecked in German.

15.6 Output Tags

This group of tags generates useful output.

• algebra: Typesets algebraic expressions

<algebra>2x^y+sqrt(3/x^2)</algebra>

Expressions are displayed using the math expression display mechanism for the cur-
rent context. The default is to use the display mechanism the user has selected in
preferences. This can be overriden by setting the display attribute for the tag. See
the section below concerning the <m> tag for more information on how the default is
set and on the display attribute.

Recognized functions are all trigonometric functions, and the following: exp, abs,
logten, log, ln, sqrt, sgn, step, fact, int, lim, funX.

• chem: Typesets chemical equation :

<chem>O2 + 2H2 -> 2H2O</chem>

15 TAGS USED IN XML AUTHORING 102

will be rendered: O2 + 2 H2 → 2 H2O

Syntax Description

– Reactants are separated from products by ‘->’.

– Individual reactants and products are separated by ‘ +’ (leading space is obliga-
tory).

– Numbers preceding the first symbol of a chemical specie are considered to be
stoichiometric coefficients.

– Numbers appearing after the first symbol of a chemical specie are considered to
be subscripts.

– Superscripts are initialized by ‘^’ and terminated by a space.

– Ionic charges are superscripts composed of a number followed by a sign (i.e. ‘^2+’).

More examples

– Ca(NO3)2 is written as:
Ca(NO3)2

– OH− + H3O
+ → 2H2O is written as:

OH^- + H3O^+ -> 2H2O

– [Co(H2O)6]
2+ + 4Cl− → [CoCl4]

2− + 6H2O is written as:
[Co(H2O)6]^2+ + 4Cl^- -> [CoCl4]^2- + 6H2O

– 3
1H +2

1 H→4
2 He +1

0 n is written as:
^3 1H + ^2 1H -> ^4 2He + ^1 0n

• num: Typesets a number formatted in scientific notation, fixed point, fixed point with
commas, fixed point with commas and dollar sign, or in significant digits.

<num format="2E">31454678</num> results in 3.15 x 10^7

<num format="2f">31454678</num> results in 31454678.00

<num format="4g">31454678</num> results in 3.145 x 10^7

<num format="4g">314.54678</num> results in 314.5

<num format=",2f">31454678</num> results in 31,454,678.00

<num format="$2f">31454678</num> results in $31,454,678.00

<num format="2s">31454678</num> results in 31000000

<num format=",2s">31454678</num> results in 31,000,000

• parse: to display the parsed view of a variable’s contents

<script type="loncapa/perl">

$table=’<table>’;

for ($i=1;$i<=10;$i++) {

$table.=’<tr><td>’.$i.’</td><td>’.&random(1,10,1).’</td></tr>’;

}

15 TAGS USED IN XML AUTHORING 103

$table.=’</table>’;

</script>

<parse>$table</parse>

• standalone: Everything in between the start and end tag is shown only on the web
and only if the resource is not part of a course.

• displayduedate: This will insert the current due date if one is set in the document.
It is generated to be inside a table of 1x1 elements. The displayduedate tag accepts
The following attributes:

style=“plain” Makes the due date appear without any boxing. If the parameter value
is other than “plain”, or if the style parameter is omitted, the due date will be
displayed within a box.

format=“fmt string” Allows you to control the format of the due date. “fmt string”
is an arbitrary string that can contain any of the following formatting items:

%a Replaced by the abbreviated weekday name according to the current locale.

%A Replaced by the full weekday name according to the current locale.

%b The abbreviated month name according to the current locale.

%B The full month name according to the current locale.

%c The preferred date and time representation for the current locale (the default
format string is just this).

%C The century number as a two digit integer

%d The day of the month as a decimal number. Leading zeroes are shown for
single digit day numbers.

%D Equivalent to %m/%d/%y

%e Like %d but a leadnig zero is replaced by a space.

%F Equivalent to %Y-%m-%d

%G The four digit year number.

%g The two digit year numbger.

%H The hour as a two digit number in the range 00 thorugh 23.

%I The hour as a two digit number in the range 00 through 12.

%j The day your the year in the range 001 through 366.

%k The hour (24 hour clock), single digits are preceded by a blank.

%l Like %k but using a 12 hour clock.

%m The month as a two digit decimal number in the range 01 through 12.

%M The minute as a two digit decimal number in the range 00 through 59.

%n A newline character.

%p AM or PM depending on the time value.

%P am or pm.

%r The time in am or pm notation.

15 TAGS USED IN XML AUTHORING 104

%R Time in 24 hour notatinon (%H:%M). See also %T below.

%s Number of seconds since midnight of January 1, 1970.

%S The second as a decimal number int the range 00 through 59.

%t A horizontal tab character.

%T The time in 24 hour notation (%H:%M:%S).

%u Day of the week as a decimal number with Monday as 1.

%U The week number of the current year in the range 00 through 53. Week 1 is
the week containing the first Sunday of the year.

%V Same as %U but week 1 is the first week with at least 4 days, with Monday
being the first day of a week.

%w Day of the week as a decimal integer in the range 0 through 7, Sunday is 0.

%W Week number of the current year in the range 00 through 53, where the
first Monday of the year is the first day of week 01.

%x The preferred date notation in the current locale without the time.

%X The preferred time notation in the current locale without the date.

%y The year as a decimal number without the century (range 00 through 99).

%Y The year as a decimal number including the century.

%% A % character.

%+ Date and time in the form returned by the Unix date command.

• displaytitle: This will insert the title of the problem from the metadata of the prob-
lem. Only the first displaytitle in a problem will show the title; this allows clean
usage of displaytitle in LON-CAPA style files.

• window: This creates a link that when clicked shows the intervening information in
a pop-up window. By default the window will be 500 pixels wide and 200 pixels tall,
and the link text will be a superscript * (so as to look like a footnote). These can be
changed using the attributes

– width controls the starting width of the popup window

– height controls the starting height of the popup window

– linktext the text that should appear as the link that causes the creation of the
window

– printtext the text that should appear instead of a footnote when printed

When printing, the included text will get turned into a real footnote.

• windowlink: This creates a link to a resource that comes up in a pop-up window.
The link will be the intervening information between the start and the end tag. By
default the window will be 500 pixels wide and 200 pixels tall.

– width controls the starting width of the popup window

15 TAGS USED IN XML AUTHORING 105

– height controls the starting height of the popup window

– href the address

• togglebox: This creates a toggling box that can be clicked open and close.

– heading heading text of the box, by default no heading

– headerbg background color of the header, by default white

– showtext the text that appears to make the box visible, by default the translation
of ‘show’

– hidetext the text that appears to hide the box again, by default the translation
of ‘hide’

When printing, the included text will be rendered in a visible box.

• m: The inside text is LATEX, and is converted to HTML (or MathML) on the fly. The
default is to convert to the display mechanism that the user has selected in preferences.
This can be overriden by setting the attribute display to one of “tth”, “mimetex”
or “mathjax” which will force a specific display mechanism. Note that the “jsmath”
display is deprecated today, and MathJax is used instead when it is specified. If a
display attribute is not included, the display mechanism is determined in the following
order, with the first one set being the one in effect:

1. In course context: Course-wide default set by Course Coordinator via Settings >
Course Settings > Display of resources > Force use of a specific math rendering
engine

2. User’s own personal preference set by the user hovering over the user’s name at
top left of a LON-CAPA page, and selecting Preferences > Math display settings

3. Domain default set by a Domain Coordinator

4. System default set for the LON-CAPA version installed on the server (tth in 2.11
and earlier, mathjax in 2.12).

The contents of <m> </m> are interpreted as LaTeX outside math environment, which is
why using <m>$ $</m> is needed to switch to the LaTeX math environment. However,
the “mathjax” display (which is used by default in recent versions of LON-CAPA) in-
terprets all the contents of <m> </m> as math, and does not support non-math LaTeX.
For content to work well with all the display mechanisms, it is therefore important to
never use non-math LaTeX for web targets. Even purely for printing, it is better to
avoid using non-math LaTeX, as the printing mechanism might use HTML instead of
LaTeX in the future.

If you want variables inside of this tag to be evaluated before the tex gets converted,
then use eval=“on” . For example, <m eval=’’on’’>$ $eqn $</m>, will evaluate the
variable $eqn first and then use the display mechanism. Anytime you use a variable
inside of the m tag, you will want to set eval to on.

15 TAGS USED IN XML AUTHORING 106

For example, put the following in a script in the resource:

$eqn = "$a+$b";

$eqn = s/\+-/-/g;
and in a text area, you can type:

<m eval=’’on’’>$ $eqn $</m>

You will get the equation rendered with no +-, no matter what value $b may take on.

• randomlabel: This shows a specified image with images or text labels randomly
assigned to a set of specific locations. Those locations may also have values assigned
to them. A hash is generated that contains the mapping of labels to locations, labels
to values, and locations to values. Example:

<randomlabel bgimg="URL" width="12" height="45" texwidth="50">

<labelgroup name="GroupOne" type="image">

<location x="123" y="456" value="10" />

<location x="321" y="654" value="20" />

<location x="213" y="546" value="13" />

<label description="TEXT-1">IMG-URL</label>

<label description="TEXT-2">IMG-URL</label>

<label description="TEXT-3">IMG-URL</label>

</labelgroup>

<labelgroup name="GroupTwo" type="text">

<location x="12" y="45" />

<location x="32" y="65" />

<location x="21" y="54" />

<label>TEXT-1</label>

<label>TEXT-2</label>

<label>TEXT-3</label>

</labelgroup>

</randomlabel>

Possible attributes are:

– bgimg: Either a fully qualified URL for an external image or a LON-CAPA
resource. It supports relative references (../images/apicture.gif). The image must
either be a GIF or JPEG.

– width: The width of the image in pixels.

– height: The height of the image in pixels.

– texwidth: The width of the image in millimeters.

15 TAGS USED IN XML AUTHORING 107

• problemtype: This tag allows you to show or hide output based on what the problem-
type parameter is set to in the course. For example:

<problemtype mode="show" for="exam,survey">

<startouttext />

The formula for the circumference of a circle is 2*pi*r

<endouttext />

</problemtype>

Will only show the output text when the problem is set to the type of exam or survey
in the course. The attribute for mode can be set to show or hide. The attribute for
for can be problem, exam, survey, or practice.

15.7 Internal Tags

• labelgroup: One is required, but multiple are allowed. This declares a group of
locations and labels associated with them. Possible attributes are:

– name: This is the name of the group. A hash with this name will be gener-
ated holding the mappings for later use in the problem. For each location a
value will be set for which label is there (EX. $hash{‘1’}=“TEXT-2”). For lo-
cations with values, the hash will contain 2 items, a location to value mapping
($hash{‘value 1’}=10), and a label to value mapping ($hash{‘labelvalue 2’}=10).
For all image style of labels there will also be a label description to label URL
mapping ($hash{‘image 2’}=IMG-URL). The entry numlocations will also be
set to the total number of locations that exist (Note: locations and labels start
counting from one.)

– type: the type of labels in this group, either ‘image’ or ‘text’

– location: declares a location on the image that a label should appear at. Possible
attributes are:

∗ x: The x value of the location in pixels.

∗ y: The y value of the location in pixels.

∗ value: An optional scalar value to associate at this location.

∗ label: Declaration of a label. If this is a text type label, the internal text
should be the text of the label (HTML is not currently supported); if this
is an image type of label, the internal text must be a LON-CAPA resource
specification, and the description filed must be set. Possible attributes are:

· description: Required field for image labels. It will be used when setting
values in the hash.

15.8 Scripting Tags

• display: The intervening Perl script is evaluated in the safe space and the return value
of the script replaces the entire tag.

15 TAGS USED IN XML AUTHORING 108

• import: This causes the parse to read in the file named in the body of the tag and
parse it as if the entire text of the file had existed at the location of the tag.

• parserlib: The enclosed filename contains definitions for new tags.

• script: If the attribute type is set to “loncapa/perl” the enclosed data is a Perl script
which is evaluated inside the Perl safe space. The return value of the script is ignored.
Without a type attribute or with the text/javascript value, the script is considered
to be Javascript, and will be executed as such by the web browser.

• scriptlib: The enclosed filename contains Perl code to run in the safe space.

• block: This has a required argument condition that is evaluated. If the condition is
true, everything inside the tag is evaluated; otherwise, everything inside the block tag
is skipped.

• notsolved: Everything inside the tag is skipped if the problem is “solved”.

• postanswerdate: Everything inside the tag is skipped if the problem is before the
answer date.

• preduedate: Everything inside the tag is skipped if the problem is after the due date.

• randomlist: The enclosed tags are parsed in a stable random order. The optional
attribute show=“N” restricts the number of tags inside that are actually parsed to
no more than N. N can equal the total tags inside. The randomlist tag can be used to
randomize problem parts by wrapping the <part> tags with a randomlist tag. Note
that when randomlist wraps <part> tags, that all students will work all parts only if
show=“N” where N is the total number of parts wrapped. When N is less than the
total number of parts wrapped, there will be gaps in the assessment chart, and also
in the table of submissions for each student, corresponding to those parts which are
never available to that particular student. For more examples see Authoring Library
Files section 10.1.

• solved: Everything inside the tag is skipped if the problem is “not solved”.

• while: This implements a while loop. The required attribute condition is a Perl
scriptlet that when evaluated results in a true or false value. If true, the entirety of
the text between the whiles is parsed. The condition is tested again, etc. If false, it
goes to the next tag.

15.9 Structure Tags

These tags give the problem a structure and take care of the recording of data and giving
the student messages.

• problem: This must be the first tag in the file. This tag sets up the header of the
webpage and generates the submit buttons. It also handles due dates properly.

16 <SCRIPT> TAG 109

• part: This must be below problem if it is going to be used. It does many of the same
tasks as problem, but allows multiple separate problems to exist in a single file.

• startouttext and endouttext: These tags are somewhat special. They must have no
internal text and occur in pairs. Their use is to mark up the problem so the colorful
editor knows what sections should be edited in a text block. They are only used by
the colorful editor.

• comment: This tag allows one to comment out sections of code in a balanced manner,
or to provide a comment description of how a problem works. It only shows up for the
edit target, stripped out for all other targets.

16 <script> Tag

16.1 Supported Script Functions

This is a list of functions that have been written that are available in the Safe space scripting
environment inside a problem:

• sin(x), cos(x), tan(x)

• asin(x), acos(x), atan(x), atan2(y,x)

• log(x), log10(x)

• exp(), pow(x,y), sqrt(x)

• abs(x), sgn(x)

• erf(x), erfc(x)

• ceil(x), floor(x)

• min(...), max(...)

• factorial(n)

• N%M (modulo function)

• sinh(x), cosh(x), tanh(x)

• asinh(x), acosh(x), atanh(x)

• roundto(x,n)

• cas(s,e,l)

• web(“a”,”b”,”c”) or web(a,b,c)

• html(“a”) or html(a)

16 <SCRIPT> TAG 110

• j0(x), j1(x), jn(n,x), jv(y,x)

• y0(x), y1(x), yn(n,x), yv(y,x)

• random

• choose

• tex(“a”,”b”) or tex(a,b)

• var in tex(a)

• to string(x), to string(x,y)

• class(), sec(), classid()

• name(), firstname(), middlename(), lastname(), student number()

• check status(partid)

• open date(partid), due date(partid), answer date(partid)

• open date epoch(partid), due date epoch(partid), answer date epoch(partid)

• submission(partid,responseid,version)

• currentpart()

• sub string()

• array moments(array)

• format(x,y),prettyprint(x,y,target),dollarformat(x,target)

• languages

• map(...)

• caparesponse check

• caparesponse check list

• parameter setting(name,partid)

• EXT()

• stored data(name,partid)

• wrong bubbles(correct,lower,upper,step,@given)

We also support these functions from Math::Cephes

16 <SCRIPT> TAG 111

bdtr: Binomial distribution

bdtrc: Complemented binomial distribution

bdtri: Inverse binomial distribution

btdtr: Beta distribution

chdtr: Chi-square distribution

chdtrc: Complemented Chi-square distribution

chdtri: Inverse of complemented Chi-square distribution

fdtr: F distribution

fdtrc: Complemented F distribution

fdtri: Inverse of complemented F distribution

gdtr: Gamma distribution function

gdtrc: Complemented gamma distribution function

nbdtr: Negative binomial distribution

nbdtrc: Complemented negative binomial distribution

nbdtri: Functional inverse of negative binomial distribution

ndtr: Normal distribution function

ndtri: Inverse of Normal distribution function

pdtr: Poisson distribution

pdtrc: Complemented poisson distribution

pdtri: Inverse Poisson distribution

stdtr: Student’s t distribution

stdtri: Functional inverse of Student’s t distribution

See https://metacpan.org/pod/Math::Cephes for more information
Support for complex numbers in the Safe space scripting environment is available via

the LONCAPA::LCMathComplex package, which is the standard Math::Complex module
available from CPAN, modified to work in Safe space.

These functions from LONCAPA::LCMathComplex are available:

Re($z)

Im($z)

arg($z)

abs($z)

where $z is a complex number created using the Cartesian form, where $a and $b are
numbers in one of the following ways:

$z = LONCAPA::LCMathComplex->make($a, $b);

$z = cplx($a, $b);

$z = $a + $b*i;

or created using the polar form, where $m and $n are numbers, in which the first argument
is the modulus, and the second is the angle in radians:

16 <SCRIPT> TAG 112

$z = LONCAPA::LCMathComplex->emake($m, pi/$n);

$z = cplxe($m, pi/$n);

Where there is no overlap with function names used for Math::Cephes functions, then
you can just use the LCMathComplex functions directly, e.g.. &cplx(), &Re(), &Im(), but
where there is overlap, as is the case for tanh(), to ensure the function from LCMathComplex
is called, include the full namespace identifier, e.g., LONCAPA::LCMathComplex::tanh().

See: https://metacpan.org/pod/Math::Complex for more information.

16.2 Script Variables

• $external::target - set to the current target the xml parser is parsing for

• $external::part - set to the id of the current problem <part>; zero if there are no
<part>

• $external::gradestatus - set to the value of the current resource.partid.solved value

• $external::datestatus - set to the current status of the clock either CLOSED, CAN ANSWER,
CANNOT ANSWER, SHOW ANSWER, or UNCHECKEDOUT

• $external::randomseed - set to the number that was used to seed the random number
generator

• $pi - set to PI

• $rad2deg - converts radians to degrees

• $deg2rad - converts degrees to radians

16.3 Table: LON-CAPA Functions

LON-CAPA Function Description
&sin($x), &cos($x), &tan($x) Trigonometric functions where x is in radians.

$x can be a pure number, i.e., you can call
&sin(3.1415)

&asin($x), &acos($x), &atan($x),
&atan2($y,$x)

Inverse trigonometric functions. Return value
is in radians. For asin and acos the value of x
must be between -1 and 1. The atan2 returns
a value between -pi and pi the sign of which is
determined by y. $x and $y can be pure num-
bers

&log($x), &log10($x) Natural and base-10 logarithm. $x can be a
pure number

&exp($x), &pow($x,$y), &sqrt($x) Exponential, power and square root, i.e.,ex, xy
and /x. $x and $y can be pure numbers

16 <SCRIPT> TAG 113

LON-CAPA Function Description
&abs($x), &sgn($x) Abs takes the absolute value of x while sgn(x)

returns 1, 0 or -1 depending on the value of x.
For x>0, sgn(x) = 1, for x=0, sgn(x) = 0 and
for x<0, sgn(x) = -1. $x can be a pure number

&erf($x), &erfc($x) Error function. erf = 2/sqrt(pi) integral (0,x)
et-sq and erfx(x) = 1.0 - erf(x). $x can be a
pure number

&ceil($x), &floor($x) Ceil function returns an integer rounded up
whereas floor function returns and integer
rounded down. If x is an integer than it re-
turns the value of the integer. $x can be a pure
number

&min(...), &max(...) Returns the minimum/ maximum value of a
list of arguments if the arguments are numbers.
If the arguments are strings then it returns a
string sorted according to the ASCII codes

&factorial($n) Argument (n) must be an integer else it will
round down. The largest value for n is 170. $n
can be a pure number

$N%$M N and M are integers and returns the remainder
(in integer) of N/M. $N and $M can be pure
numbers

&sinh($x), &cosh($x), &tanh($x) Hyperbolic functions. $x can be a pure number
&asinh($x), &acosh($x), &atanh($x) Inverse hyperbolic functions. $x can be a pure

number
&format($x,’nn’) Display or format $x as nn where nn is nF or

nE or nS and n is an integer.
$expr=&math calculus expression() Creates Math::Calculus::Expression object.

Methods are: $expr-¿addVariable(’x’),
$expr-¿setExpression(’f(x)’), $expr-
¿simplify, $expr-¿getExpression – see
Math::Calculus::Expression documentation
at cpan.org for details.

($a,$u)=&conv eng format($x,$b) Converts numerical value $x and base unit $b
to answer $a and corresponding unit $u in en-
gineering format, i.e., the answer is scaled by
powers of ten, and an appropriate prefix from:
m u n p f a z y k M G T P E Z Y precedes the
base unit. Called in a script block to generate
variables to assign to answer and unit attributes
of numericalresponse tag.

16 <SCRIPT> TAG 114

LON-CAPA Function Description
&prettyprint($x,’nn’,’optional target’) Note that that tag <num> can be used to do

the same thing. Display or format $x as nn
where nn is nF or nE or nS and n is an integer.
Also supports the first character being a $, it
then will format the result with a a call to &dol-
larformat() described below. If the first charac-
ter is a , it will format it with commas grouping
the thousands. In S mode it will fromat the
number to the specified number of significant
figures and display it in F mode. In E mode it
will attempt to generate a pretty x10ˆ3 rather
than a E3 following the number, the ’optional
target’ argument is optional but can be used to
force &prettyprint to generate either ’tex’ out-
put, or ’web’ output, most people do not need
to specify this argument and can leave it blank.

&dollarformat($x,’optional target’) Reformats $x to have a $ (or \$ if in tex mode)
and to have , grouping thousands. The ’optional
target’ argument is optional but can be used to
force &prettyprint to generate either ’tex’ out-
put, or ’web’ output, most people do not need
to specify this argument and can leave it blank.

Option 1 - $best = &languages()
Option 2 - @all = &languages()
Option 3 - $best =
&languages(\@desired languages)
Option 4 - @all =
&languages(\@desired languages)

Returns the best language to use, in the first
two options returns the languages codes in the
preference order of the user. In the second two
examples returns the best matches from a list
of desired language possibilities.

&roundto($x,$n) Rounds a real number to n decimal points. $x
and $n can be pure numbers

&cas($s,$e,$l) Evaluates the expression $e inside the sym-
bolic algebra system $s. Currently, the
Maxima symbolic math system (’maxima’)
and the R statistical computing system
(’R’) are implemented. $l is an optional
comma-separated list of libraries. Example:
&cas(’maxima’,’diff(sin(x)/cos(x),x,2)’)

16 <SCRIPT> TAG 115

LON-CAPA Function Description
&implicit multiplication($f) Adds mathematical multiplication operators

to the formula expression $f where only
implicit multiplication is used. Exam-
ple: &implicit multiplication(’2(b+3c)’) re-
turns 2*(b+3*c)

&web(“a”,”b”,”c”) or &web($a,$b,$c) Returns either a, b or c depending on the output
medium. a is for plain ASCII, b for tex output
and c for html output

&html(“a”) or &html($a) Output only if the output mode chosen is in
html format

&j0($x), &j1($x), &jn($m,$x), &jv($y,$x) Bessel functions of the first kind with orders 0,
1 and m respectively. For jn(m,x), m must be
an integer whereas for jv(y,x), y is real. $x can
be a pure number. $m must be an integer and
can be a pure integer number. $y can be a pure
real number

&y0($x), &y1($x), &yn($m,$x), &yv($y,$x) Bessel functions of the second kind with orders
0, 1 and m respectively. For yn(m,x), m must
be an integer whereas for yv(y,x), y is real. $x
can be a pure number. $m must be an integer
and can be a pure integer number. $y can be a
pure real number

&random($l,$u,$d) Returns a uniformly distributed random num-
ber between the lower bound, l and upper
bound, u in steps of d. d is optional. If omitted,
a step of 1 is used. $l, $u and $d can be pure
numbers.

&choose($i,...) Choose the ith item from the argument list. i
must be an integer greater than 0 and the value
of i should not exceed the number of items. $i
can be a pure integer

16 <SCRIPT> TAG 116

LON-CAPA Function Description
Option 1 -
&map($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&map($seed,\@mappedArray,[$a,$b,$c,$d])
Option 3 - @mappedArray =
&map($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&map($seed,\@a)
Option 5 - @Z = &map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

Assigns to the variables $w, $x, $y and $z the
values of the $a, $b, $c and $c (A, B, C and
D). The precise value for $w .. depends on the
seed. (Option 1 of calling map). In option 2,
the values of $a, $b .. are mapped into the ar-
ray, @mappedArray. The two options illustrate
the different grouping. Options 3 and 4 give a
consistent way (with other functions) of map-
ping the items. For each option, the group can
be passed as an array, for example, [$a,$b,$c,$d]
=> \@a. And Option 5 is the same as option 4,
where the array of results is saved into a single
array rather than an array of scalar variables.

Option 1 -
&rmap($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&rmap($seed,\@rmappedArray,[$a,$b,$c,$d])
Option 3 - @rmapped array =
&rmap($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&rmap($seed,\@a)
Option 5 - @Z = &map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

The rmap functions does the reverse action of
map if the same seed is used in calling map and
rmap.

$a=&xmlparse($string) You probably should use the tag <parse> in-
stead of this function. Runs the internal parser
over the argument parsing for display. Warn-
ing This will result in different strings in differ-
ent targets. Don’t use the results of this func-
tion as an answer.

&tex($a,$b), &tex(“a”,”b”) Returns a if the output mode is in tex otherwise
returns b

16 <SCRIPT> TAG 117

LON-CAPA Function Description
&var in tex($a) Equivalent to tex(“a”,”“)
&to string($x), &to string($x,$y) If x is an integer, returns a string. If

x is real than the output is a string with
format given by y. For example, if x =
12.3456, &to string(x,”.3F”) = 12.345 and
&to string(x,”.3E”) = 1.234E+01.

&class(), &sec(), &classid() Returns null string, class descriptive name, sec-
tion number, class id, set number and null
string.

&name(), &student number(), &firstname(),
&middlename(), &lastname()

Return the full name in the following format:
lastname, firstname initial. Student number re-
turns the student 9-alphanumeric string. The
functions firstname, middlename, and lastname
return just that part of the name. If undefined,
the functions return null.

&check status($partid) Returns a number identifying the current sta-
tus of a part. True values mean that a part is
“done”: either unanswerable because of tries ex-
haustion, or fully correct, or only partially cor-
rect (and retries not permitted). A false value
means that a part can still be attempted. If
$part is unspecified, it will check either the cur-
rent <part>’s status or if outside of a <part>,
check the status of previous <part>. The full
set of return codes are: ’undef’ means it is unat-
tempted, 0 means it is attempted but still has
tries, and is either wrong (or partially correct,
retries allowed), 1 means it is fully correct or
partially correct (no retries), 2 means they have
exceeded maximum number of tries, 3 means it
is after the answer date.

&open date($partid), &due date($partid),
&answer date($partid)

Problem open date, due date and answer date in
local human-readable format. Part 0 is chosen
if $partid is omitted.

&open date epoch($partid),
&due date epoch(($partid), &an-
swer date epoch(($partid)

Problem open date, due date and answer date
in seconds after the epoch (UTC), which can be
used in calculations.

16 <SCRIPT> TAG 118

LON-CAPA Function Description
&submission($partid,$responseid,$version,
$encode,$cleanupnum,$mapalias)

Returns what the student submitted for re-
sponse $responseid in part $partid. You can get
these IDs from the XML-code of the problem.
Use 0 as $partid for problems without parts.
$version is optional and returns the $version-
th submission of the student that was graded.
If $version is 0 or omitted, the latest submis-
sion is returned. $encode is also optional and
allows the author to explicitly encode the re-
turned string. It’s up to the author to take care
of properly escaping all characters which might
be interpreted by the browser. $cleanupnum is
also optional, and supports clean-up of the re-
trieved submission. It is a reference to a hash,
with one or more of the following: exponent =>
1, comma => 1, letterforzero => 1, spaces =>
1, format => ’ns’ (where n is an integer, i.e.,
number of significant digits). For example, to
convert a student submission of 11,300 to 11300
include { comma => 1, } as the fifth arg. $ma-
palias is also optional, and supports retrieval of
the submission for a response item in a differ-
ent problem in the course, for which a (unique)
mapalias has been set. The default (mapalias
not defined) is to retrieve the submission for the
specified part and response IDs in the current
problem.

¶meter setting($name,$partid) Returns the parameter setting $name. Partid is
optional.

&stored data($name,$partid) Returns the stored data $name. Partid is op-
tional.

&wrong bubbles($correct,$lower,$upper,$step,@given)Returns an array that can be used for wrong
answers in numerical responses. The first ar-
gument is the correct answer, the next argu-
ments are the lower and upper boundaries for
the bubbles, as well as the step size. The next
argument is an optional array of wrong answers
that should be included.

¤tpart() Returns the ID of the current part.
&input id(part id, response id, textline id) Returns the HTML id of the input field.

This is useful in Javascript scripts to get a
safe reference to a response textline field with
document.getElementById().

16 <SCRIPT> TAG 119

LON-CAPA Function Description
Not implemented Get and set the random seed.
&sub string($a,$b,$c) perl substr function.
However, note the differences

Retrieve a portion of string a starting from b
and length c. For example, $a = “Welcome
to LON-CAPA”; $result=&sub string($a,4,4);
then $result is “come”

@arrayname Array is intrinsic in perl. To access
a specific element use $arrayname[$n] where $n
is the $n+1 element since the array count starts
from 0

“xx” can be a variable or a calculation.

@B=&array moments(@A) Evaluates the moments of an array A and place
the result in array B[i] where i = 0 to 4. The
contents of B are as follows: B[0] = number of
elements, B[1] = mean, B[2] = variance, B[3] =
skewness and B[4] = kurtosis.

&min(@Name), &max(@Name) In LON-CAPA to find the maximum value
of an array, use &max(@arrayname) and to
find the minimum value of an array, use
&min(@arrayname)

undef @name To destroy the contents of an array, use
@return array=&random normal
($item cnt,$seed,$av,$std dev)

Generate $item cnt deviates of normal distri-
bution of average $av and standard deviation
$std dev. The distribution is generated from
seed $seed

@return array=&random beta
($item cnt,$seed,$aa,$bb) NOTE: Both $aa
and $bb MUST be greater than 1.0E-37.

Generate $item cnt deviates of beta distribu-
tion. The density of beta is: Xˆ($aa-1) *(1-
X)ˆ($bb-1) /B($aa,$bb) for 0<X<1.

@return array=&random gamma
($item cnt,$seed,$a,$r) NOTE: Both $a
and $r MUST be positive.

Generate $item cnt deviates of gamma dis-
tribution. The density of gamma is:
($a**$r)/gamma($r) * X**($r-1) * exp(-$a*X).

@return array=&random exponential
($item cnt,$seed,$av) NOTE: $av MUST
be non-negative.

Generate $item cnt deviates of exponential dis-
tribution.

@return array=&random poisson
($item cnt,$seed,$mu) NOTE: $mu MUST
be non-negative.

Generate $item cnt deviates of poisson distri-
bution.

@return array=&random chi
($item cnt,$seed,$df) NOTE: $df MUST
be positive.

Generate $item cnt deviates of chi square dis-
tribution with $df degrees of freedom.

@return array=&random noncentral chi
($item cnt,$seed,$df,$nonc) NOTE: $df MUST
be at least 1 and $nonc MUST be non-negative.

Generate $item cnt deviates of noncen-
tral chi square distribution with $df degrees of
freedom and noncentrality parameter $nonc.

16 <SCRIPT> TAG 120

LON-CAPA Function Description
@return array=&random f
($item cnt,$seed,$dfn,$dfd) NOTE: Both
$dfn and $dfd MUST be positive.

Generate $item cnt deviates of F (variance ra-
tio) distribution with degrees of freedom $dfn
(numerator) and $dfd (denominator).

@return array=&random noncentral f
($item cnt,$seed,$dfn,$dfd,$nonc) NOTE:
$dfn must be at least 1, $dfd MUST be
positive, and $nonc must be non-negative.

Generate $item cnt deviates of noncentral F
(variance ratio) distribution with degrees of
freedom $dfn (numerator) and $dfd (denomi-
nator). $nonc is the noncentrality parameter.

@return array=&random multivariate normal
($item cnt,$seed,\@mean,\@covar) NOTE:
@mean should be of length p array of real
numbers. @covar should be a length p array of
references to length p arrays of real numbers
(i.e. a p by p matrix.

Generate $item cnt deviates of multivari-
ate normal distribution with mean vector
@mean and variance-covariance matrix.

@return array=&random multinomial
($item cnt,$seed,@p) NOTE: $item cnt is
rounded with int() and the result must be
non-negative. The number of elements in @p
must be at least 2.

Returns single observation from multinomial
distribution with $item cnt events classified into
as many categories as the length of @p. The
probability of an event being classified into cat-
egory i is given by ith element of @p. The ob-
servation is an array with length equal to @p,
so when called in a scalar context it returns the
length of @p. The sum of the elements of the
obervation is equal to $item cnt.

@return array=&random permutation
($seed,@array)

Returns @array randomly permuted.

@return array=&random uniform
($item cnt,$seed,$low,$high) NOTE: $low
must be less than or equal to $high.

Generate $item cnt deviates from a uniform dis-
tribution.

@return array=&random uniform integer
($item cnt,$seed,$low,$high) NOTE: $low and
$high are both passed through int(). $low must
be less than or equal to $high.

Generate $item cnt deviates from a uniform dis-
tribution in integers.

@return array=&random binomial
($item cnt,$seed,$nt,$p) NOTE: $nt is rounded
using int() and the result must be non-negative.
$p must be between 0 and 1 inclusive.

Generate $item cnt deviates from the binomial
distribution with $nt trials and the probabilty
of an event in each trial is $p.

@return array=&random negative binomial
($item cnt,$seed,$ne,$p) NOTE: $ne is rounded
using int() and the result must be positive. $p
must be between 0 and 1 exclusive.

Generate an array of $item cnt outcomes gen-
erated from negative binomial distribution with
$ne events and the probabilty of an event in
each trial is $p.

The &EXT() external function is extremely powerful, and is used to access parameters
and submission values. It can be used within scripts and also within cell formulas in
the grading spreadsheet. Some examples can be found by browsing in the repository to
/res/msu/albertel/test/ext examples.html. The &EXT() function can be used to obtain val-

16 <SCRIPT> TAG 121

ues for the same parameters as are retrived by some of the other (newer) helper functions sum-
marized in the table above, such as &firstname() which is equivalent to &EXT(‘environment.firstname’),
and ¶meter setting($name,$partid) is equivalent to &EXT(‘resource.’.$partid.‘.’.$name).
In such cases the newer (specialized) functions are preferred to &EXT() on the basis of ease
of use.

16.4 Table: CAPA vs. LON-CAPA Function Differences

CAPA Functions LON-CAPA Differences (if any)
sin(x), cos(x), tan(x) &sin($x), &cos($x), &tan($x)
asin(x), acos(x), atan(x),
atan2(y,x)

&asin($x), &acos($x), &atan($x),
&atan2($y,$x)

log(x), log10(x) &log($x), &log10($x)
exp(x), pow(x,y), sqrt(x) &exp($x), &pow($x,$y), &sqrt($x)
abs(x), sgn(x) &abs($x), &sgn($x)
erf(x), erfc(x) &erf($x), &erfc($x)
ceil(x), floor(x) &ceil($x), &floor($x)
min(...), max(...) &min(...), &max(...)
factorial(n) &factorial($n)
N%M $N%$M
sinh(x), cosh(x), tanh(x) &sinh($x), &cosh($x), &tanh($x)
asinh(x), acosh(x),
atanh(x)

&asinh($x), &acosh($x),
&atanh($x)

/DIS($x,”nn”) &format($x,’nn’) The difference is obvious.
Not in CAPA &prettyprint($x,’nn’,’optional

target’)
Not in CAPA &dollarformat($x,’optional target’)
Not in CAPA &languages(@desired languages)
roundto(x,n) &roundto($x,$n)
Not in CAPA &cas($s,$e)
Not in CAPA &implicit multiplication($f)
web(“a”,”b”,”c”) or
web(a,b,c)

&web(“a”,”b”,”c”) or
&web($a,$b,$c)

html(“a”) or html(a) &html(“a”) or &html($a)
jn(m,x) &j0($x), &j1($x), &jn($m,$x),

&jv($y,$x)
In CAPA, j0, j1 and jn are con-
tained in one function, jn(m,x)
where m takes the value of 0,
1 or 2. jv(y,x) is new to LON-
CAPA.

16 <SCRIPT> TAG 122

CAPA Functions LON-CAPA Differences (if any)
yn(m,x) &y0($x), &y1($x), &yn($m,$x),

&yv($y,$x)
In CAPA, y0, y1 and yn
are contained in one function,
yn(m,x) where m takes the
value of 0, 1 or 2. yv(y,x) is
new to LON-CAPA.

random(l,u,d) &random($l,$u,$d) In CAPA, all the 3 arguments
must be of the same type.
However, now you can mix the
type

choose(i,...) &choose($i,...)

/MAP(seed;w,x,y,z;a,b,c,d)

Option 1 -
&map($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&map($seed,\@mappedArray,[$a,$b,$c,$d])
Option 3 - @mappedArray =
&map($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&map($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

In CAPA, the arguments are
divided into three groups sep-
arated by a semicolon ;. In
LON-CAPA, the separation is
done by using [] brackets or
using an array @a. Note the
backslash (\) before the argu-
ments in the second and third
groups.

16 <SCRIPT> TAG 123

CAPA Functions LON-CAPA Differences (if any)

rmap(seed;a,b,c,d;w,x,y,z)

Option 1 -
&rmap($seed,[\$w,\$x,\$y,\$z],[$a,$b,$c,$d])
or
Option 2 -
&rmap($seed,\@rmappedArray,[$a,$b,$c,$d])
Option 3 - @rmapped array =
&rmap($seed,[$a,$b,$c,$d])
Option 4 - ($w,$x,$y,$z) =
&rmap($seed,\@a)
where $a=’A’
$b=’B’
$c=’B’
$d=’B’
$w, $x, $y, and $z are variables

In CAPA, the arguments are
divided into three groups sep-
arated by a semicolon ;. In
LON-CAPA, the separation is
done by using [] brackets (with
create an unamed vector ref-
erence) or using an array @a.
Note the backslash (\) before
the arguments in the second
and third groups (Which cause
Perl to send to variable loca-
tions rather than the variable
values, similar to a C pointer).

NOT IMPLEMENTED IN
CAPA

$a=&xmlparse($string) New to LON-CAPA

tex(a,b), tex(“a”,”b”) &tex($a,$b), &tex(“a”,”b”)
var in tex(a) &var in tex($a)
to string(x), to string(x,y) &to string($x), &to string($x,$y)
capa id(), class(), section(),
set(), problem()

&class(), &sec() capa id(), set() and problem()
are no longer used. Currently,
they return a null value.

name(), student number() &name(), &student number()
open date(), due date(),
answer date()

&open date(), &due date(), &an-
swer date()

Output format for time is
changed slightly. If pass noon,
it displays ..pm else it displays
..am. So 23:59 is displayed as
11:59 pm.

get seed(), set seed() Not implemented
sub string(a,b,c) &sub string($a,$b,$c) perl substr

function. However, note the differ-
ences

Perl intrinsic function, sub-
str(string,b,c) starts counting
from 0 (as opposed to 1). In
the example to the left, sub-
str($a,4,4) returns “ome “.

16 <SCRIPT> TAG 124

CAPA Functions LON-CAPA Differences (if any)
array[xx] @arrayname Array is intrinsic in

perl. To access a specific element
use $arrayname[$n] where $n is the
$n+1 element since the array count
starts from 0

In LON-CAPA, an array is de-
fined by @arrayname. It is not
necessary to specify the dimen-
sion of the array.

array moments(B,A) @B=&array moments(@A) In CAPA, the moments are
passed as an array in the first
argument whereas in LON-
CAPA, the array containing
the moments are set equal to
the function.

array max(Name), ar-
ray min(Name)

&min(@Name), &max(@Name) Combined with the min and
max functions defined earlier.

init array(Name) undef @name Use perl intrinsic undef func-
tion.

random normal (re-
turn array,item cnt,seed,av,std dev)

@return array=&random normal
($item cnt,$seed,$av,$std dev)

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random beta (re-
turn array,item cnt,seed,aa,bb)

@return array=&random beta
($item cnt,$seed,$aa,$bb) NOTE:
Both $aa and $bb MUST be greater
than 1.0E-37.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random gamma (re-
turn array,item cnt,seed,a,r)

@return array=&random gamma
($item cnt,$seed,$a,$r) NOTE:
Both $a and $r MUST be positive.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random exponential (re-
turn array,item cnt,seed,av)

@return array=&random exponential
($item cnt,$seed,$av) NOTE: $av
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random poisson (re-
turn array,item cnt,seed,mu)

@return array=&random poisson
($item cnt,$seed,$mu) NOTE: $mu
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random chi (re-
turn array,item cnt,seed,df)

@return array=&random chi
($item cnt,$seed,$df) NOTE:
$df MUST be positive.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

random noncentral chi (re-
turn array,item cnt,seed,df,nonc)

@return array=&random noncentral chi
($item cnt,$seed,$df,$nonc) NOTE:
$df MUST be at least 1 and $nonc
MUST be non-negative.

In CAPA the results are passed
as the first argument whereas
in LON-CAPA the results are
set equal to the function.

16 <SCRIPT> TAG 125

CAPA Functions LON-CAPA Differences (if any)
NOT IMPLEMENTED IN
CAPA

@return array=&random f
($item cnt,$seed,$dfn,$dfd) NOTE:
Both $dfn and $dfd MUST be
positive.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random noncentral f
($item cnt,$seed,$dfn,$dfd,$nonc)
NOTE: $dfn must be at least 1,
$dfd MUST be positive, and $nonc
must be non-negative.

New to LON-CAPA

NOT DOCUMENTED IN
CAPA

@return array=&random multivariate normal
($item cnt,$seed,\@mean,\@covar)
NOTE: @mean should be of length
p array of real numbers. @covar
should be a length p array of
references to length p arrays of real
numbers (i.e. a p by p matrix.

Note the backslash before the
@mean and @covar arrays.

NOT IMPLEMENTED IN
CAPA

@return array=&random multinomial
($item cnt,$seed,@p) NOTE:
$item cnt is rounded with int() and
the result must be non-negative.
The number of elements in @p must
be at least 2.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random permutation
($seed,@array)

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random uniform
($item cnt,$seed,$low,$high)
NOTE: $low must be less than
or equal to $high.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random uniform integer
($item cnt,$seed,$low,$high)
NOTE: $low and $high are both
passed through int(). $low must be
less than or equal to $high.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random binomial
($item cnt,$seed,$nt,$p) NOTE:
$nt is rounded using int() and the
result must be non-negative. $p
must be between 0 and 1 inclusive.

New to LON-CAPA

NOT IMPLEMENTED IN
CAPA

@return array=&random negative binomial
($item cnt,$seed,$ne,$p) NOTE:
$ne is rounded using int() and the
result must be positive. $p must be
between 0 and 1 exclusive.

New to LON-CAPA

17 BRIDGE TASK 126

17 Bridge Task

Bridge Tasks (BTs) are open-ended, performance-based assessments. BTs are based on a
mastery-model of assessment and evaluated on a pass-fail basis. You may use BTs in a
variety of ways, from supporting the scoring of a final project, to individual lab assignments.
See Introduction to Bridge Task (17.1) for a more in-depth explanation to Bridge Tasks. The
main features of a bridge task (17.2) section gives the differences between BTs and other
assessments.

An author creates a bridge task either by writing the XML code or by using the edit
mode and publishing it. A course coordinator must then place the Bridge Task resource in
his/her course’s document list. The section on Bridge Task Creation (17.3) describes how
to author as well as set up these Bridge Tasks.

Once the bridge task is created and published, the course coordinator must insert the
resource in the course’s document list (See Setting Up a Bridge Task 17.6). The course
coordinator may also create slots to limit the place/time the bridge task may be opened (See
Using Slots in Bridge Task 17.6.1). This resource may also be placed inside conditionals
resources so that it is accessible only after a particular condition has been met (see Bridge
Task and Conditional Resources 17.6.2).

Once the course coordinator has set up the Bridge Task the student is able to open and
use the bridge task. A Bridge Task hand-in process using portfolio files may be used by the
instructors or students if they wish (See Handing In Bridge Task Files 17.7).

17.1 Introduction to Bridge Task

Bridge tasks consist of one or more individual tasks that describe what the student is to
do, usually in the form of a problem to solve. LON-CAPA supports the creation of multiple
versions of each task, so that each student may receive a mix of randomly assigned tasks
to perform. Students use LON-CAPA to view the bridge task. LON-CAPA supports the
scheduling of BTs to restrict access by IP address range and to allow students to schedule
slots of time to take a BT.

When students complete a BT, they upload files they have created for grading. Files are
uploaded using LON-CAPA’s portfolio system.

LON-CAPA supports the creation of scoring rubrics associated with each individual
task to guide graders and ensure inter-rater reliability among multiple graders in a course.
Instructors specify criteria to assign an overall score to a BT based on the scores of the
individual rubrics.

BTs are used in Michigan State University’s CSE 101 course. The course is designed to
teach computer competencies by having students solve problems using a variety of computer
software (MS-Word, MS-Excel, World Wide Web, and MS Access). In CSE 101, BTs are
used for summative assessment, the majority of students’ grades are based upon the BTs.
Here, students must successfully pass a BT before attempting the next BT. A student’s
final course grade is based on the highest level BT passed. The CSE 101 class is quite
large, approximately 2000 students per semester. Students may take up to one BT per week;
typically there are over 14,000 BTs administered per semester. Thus there is a need to quickly
and accurately access students. LON-CAPA successfully supports the load requirements.

17 BRIDGE TASK 127

17.2 Bridge Task Features

There are many ways in which BTs differ from other assessments.

1. Multiple Versions. There are multiple versions of a BT. A person taking a BT may
receive a different version than the person taking the same BT sitting next to him
or her. To create BTs that have different versions, the instructors who created the
BT will create multiple sub-questions. The BT engine then chooses one of the sub
questions and gives that sub question to the student, thus creating multiple versions.

2. Essay/task based. Bridge task questions open-ended. Users create files which they
upload and submit to the system.

3. Rubric-Based Grading. Each question in a bridge task has scoring rubrics, criteria,
associated with them. These criteria are used as the basis of grading. The grading
page provides the criteria checklist on which the grader enters whether a student passes
or fails each criterion. This ensures inter-rater reliability among multiple graders.

4. Mandatory and Optional Criteria. Some criteria can be made mandatory, that is
a student will fail if the student does not pass that criteria. Some criteria are optional
and the student must pass a certain number of these optional criteria. Criteria are
associated with questions, which can also be made optional or mandatory. LON-CAPA
calculates whether a student has passed or fail based on the number of mandatory and
optional questions the student has passed.

5. Automatic Bookkeeping. The system calculates whether the student has passed a
BT or not and records it into the database. The system stores

• a complete record of the BT each student received

• when each student’s BT was administered

• the BT instance

• the files the student turned in

• the associated grading criteria

• the grading results (and history of grading, including grader ID)

6. Sequential Bridge Tasks. The system can be set in such a way that a student can
only take a certain bridge task after passing the previous bridge task on the list. This
is done using conditionals in LON-CAPA. There are other ways to use conditionals
and bridge tasks to customize the usage of bridge tasks in a course.

7. Slots. Slots can be created to relate students with time and location. This allows
control of where and when a student can take a bridge task.

8. Proctor Authentication. Slots also allow a particular proctor to be in a particular
location for a bridge task. Each student who is scheduled to take the bridge task must
be authenticated by the proctor.

17 BRIDGE TASK 128

Figure 32: Bridge Task creation flowchart

17.3 Authoring Bridge Task

There are multiple steps for creating a bridge task and setting the bridge task up so that the
students is able to use it. The flow of the bridge task creation process is shown in figure 32.

There are two ways of creating the bridge task. The first method is to directly edit the
XML file being used (See Bridge Task XML Editing 17.4). The second method is to use the
LON-CAPA online edit mode (See Bridge Task Mode Editing 17.5).

Once the bridge task is created and published, the course coordinator must insert the
resource in the course’s document list (See Setting Up Bridge Task 17.6). The course coor-
dinator may also create slots to allow for multiple place/time the bridge task may be opened
or to allow for multiple separate attempts at the bridgetask (See Using Slots in Bridge Task
17.6.1). As with any resource, the map it is in may use conditionals to control access to the
resources based on other information in the course. (For example, the section of a user, the
passing of a prior bridgetask, etc.)

17.4 Bridge Task XML Editing

The LON CAPA .task format is an XML file used directly by LON CAPA. XML is a markup
language, much like HTML. A primer on XML is given in section 9. An XML file contains
elements in tags, and elements may contain attributes. The syntax, spelling (including
capitalization) of the XML file must be exact, otherwise the XML file will generate errors.

The online editor for the .task format is discussed in the next section. This section
describes creating the .task file by simply using a text editor such as Notepad.

17 BRIDGE TASK 129

The .task format consists of four parts:

• The header, which contains information about the file itself. The header can be copied
from this documentation as is (see .Task Headers 17.4.1)

• Parameter information. This part consists of the possible values for various parameters
in the Bridge Task (see .Task Parameter and Variable 17.4.2)

• Questions section. This part consists of the actual text the user sees as well as all
criteria and questions (see .Task Question 17.4.3)

• Footer section. This part consists of the actual text the user sees as well as all criteria
and questions (see .Task Finishing Up 17.4.4)

Once all parts are created, the author must publish the file so that it is accessible by
course coordinators (see .Task Finishing Up 17.4.4).

17.4.1 .Task Headers

The root node of the .task format is the task element, which is an XML element written as
follows:

<Task OptionalRequired=’0’>
The Task element signifies that this is a bridge task. The OptionalRequired is a manda-

tory attribute, and the value (0 in this case) determines how many optional questions the
student must pass.

17.4.2 .Task Parameter and Variable

To create difference versions of Bridge Tasks for each student, parts of the questions are
defined using variables. Each variable contains multiple instances of possible values and
LON-CAPA randomly selects an instance to give to the student.

All variables are placed inside a Setup element. Each setup element has an id attribute
which contains the name of the variable. The possible instances or values of those variables
are placed inside the setup element inside an Instance tag. Each Instance element has two
mandatory attributes, the OptionalRequired attribute which should be set to 0, and the
unique id of that instance. The value of the id attribute can be any text as long as it is
unique throughout the document.

The actual data of the instance is placed inside InstanceText tags. Currently the instance
data is created with a loncapa/perl script. In this script the parameters of the variable are set.
The syntax to set the parameter of a variable is ’$variableName {fieldname} = “fieldValues”’.
The variable name is taken from the attribute id from the Setup element, the field name is
the name of the parameter the author sets, and the fieldValue is simply the value of the field.
The first parameter that must be set is the instance field, with the value being an identifier
of the instance.

The example below shows a portion of the bridge task XML file. This portion should be
placed inside the task element :Lines between <!−− and −− > or /∗ and ∗/ are comments
and should not be typed into the editor.

17 BRIDGE TASK 130

<!-- Create a variable named entity Subject -->

<Setup id="entitySubject">

<!-- The first instance. With id instanceHarry -->

<Instance OptionalRequired="0" id="instanceHarry">

<!-- The parameters for this instance -->

<InstanceText>

<script type=’loncapa/perl’>

/* The first line must be the instance id */

$entitySubject{instance} = "instanceHarry";

/* The two parameters. Personname = Harry and place=zoo */

$entitySubject{personname} = "Harry";

$entitySubject{place} = "zoo";

</script>

</InstanceText>

</Instance>

<!--End of instanceHarry-->

<!-- The second instance. With id instanceBetty -->

<Instance OptionalRequired="0" id="instanceBetty">

<!-- The parameters for this instance -->

<InstanceText>

<script type=’loncapa/perl’>

/* The first line must be the instance id */

$entitySubject{instance} = "instanceBetty";

/* The two parameters. Personname = Betty and place=park */ $entitySubject{personname} =

$entitySubject{place} = "park";

</script>

</InstanceText>

</Instance>

<!--End of instanceBetty-->

</Setup>

The example above describes a variable question. It has two different possible val-
ues for the entity “subject”, Harry and zoo or Betty and park. Variables can be placed
inside the questions by using the variable name and field name. The first line <Setup
id=“entitySubject”> creates a variable named entitySubject (based on the id attribute of
this line).

The first instance of this variable is shown from lines 2 to 10. Line two <Instance Option-
alRequired=“0” id=“instanceHarry”> marks the beginning of the instance element named
instanceHarry (based on the id attribute). The OptionalRequired is given a value of 0.

17 BRIDGE TASK 131

Lines 3-9 determine the actual value of this variable. Lines 3 and 4 must be typed as shown.
Lines 5-7 define the instance properties, which must be of the form $ <variable name>
{<property name> } = <value>. The first line of the property must be the instance prop-
erty (see line 5 of example), with the value being the id of the instance. Other lines (6-7)
can be used for any attributes you wish to define. The closing </script>, </InstanceText>
and </Instance> tags must be typed as shown.

Line 12-21 shows the second instance with the same rules as the first instance. Line 23
</Setup> gives the closing Setup tag which must be as shown.. The example of the usage
of this variable inside the question is this text:

This is a test question. $entitySubject{personname} went to the $entitySubject{place}.
.

The LON-CAPA engine will replace any instance of $<variable name> (<property name>)
with the correct value, depending on the randomly chosen instance.

Based on this code, two different questions are possible:

1. This is a test question. Harry went to the zoo

2. This is a test question. Betty went to the park

17.4.3 .Task Questions and Criteria

The task description should be divided into questions. Questions can also be divided into
sub-questions. A question or sub-question must have one or more criteria that are the scoring
rubrics used to evaluate that question. A task may also have a criteria. Graders use these
criteria to evaluate student work Both questions and criteria are interspersed within the task
description, placed where students see them when reviewing their graded bridge task.

Questions are created by using the Question tag. Each question must have a unique id
attribute which identifies the question, the value of the id attribute is any text that is unique
in the document. Each question must also have the Mandatory attribute which can be set
to “Y” if the question is mandatory or “N” otherwise. Finally the question may also have
a OptionalRequired attribute, which determines how many optional criteria students must
pass to pass the question.

The question element will have the actual text of the question. The questions are created
inside the QuestionText element. The question descriptions are placed inside the file by
simply typing the text. The text can be marked up to have various formatting. The mark
up language used is simple HTML.

Criteria are created using the Criteria tag. The attributes for the criteria tag are similar
to the attributes for the questions tag. Criteria tags have id attributes as well as Mandatory
attributes. Like for the question tag, the value of the id attribute is any text that is unique
in the document, and the Mandatory attribute (values “Y” or “N”) determines whether the
criteria is mandatory or not. Criteria tags do not have OptionalRequired attributes. The
criteria description is created inside the CriteriaText element and can be formatted the same
way as the formatting of the questions (using HTML).

The following is an example of a question and criteria element. Question elements are
placed inside the task element or inside other question elements. Text between <! − −and
−− > are comments and should not be typed into the editor.

17 BRIDGE TASK 132

<!-- Beginning of question element with id q.testquestion. A mandatory question where the

<Question id=’q.testquestion’ Mandatory=’Y’ OptionalRequired=’1’>

<!--The text of the question -->

<QuestionText>

Some test explanation

<!--A mandatory criteria with the id of ’criteria.overall.handin’. This criteria will not

<Criteria id=’criteria.overall.handin’ Mandatory=’Y’>

<!--The text of the criteria-->

<CriteriaText>

Criteria text 1

<!--Grader Notes are not shown to the students at all -->

<GraderNote>

This part cannot be seen by students but is used to give additional info to the grader to

</GraderNote>

</CriteriaText>

</Criteria>

<!--End of the criteria -->

<!--An optional question named q.question1 -->

<Question Mandatory=’N’ id=’q.question1’ OptionalRequired=’0’>

<QuestionText>

The actual test question

<!--A mandatory criteria -->

<Criteria id=’criteria.question1’ Mandatory=’Y’>

<CriteriaText>

Criteria text 2

</CriteriaText>

</Criteria>

</QuestionText>

</Question>

<!--End of question q.question1-->

<!--Some more question text -->

Instructions to the student on submitting files

</QuestionText>

</Question>

<!--End of question q.testquestion-->

The question that the students will see is:
“Some test explanation

The actual test question
Instructions to the student on submitting files
”

17 BRIDGE TASK 133

Any text inside a QuestionText element (lines 2, 14) and not inside a criteria element
will be shown to the users. This example has one question, and one optional sub-question.
The question element is given in line 1, the id of the question being ’q.testquestion’, it is a
mandatory question (Mandatory=’Y’) and it requires that 1 optional question/criteria be
passed (OptionalRequired=’1’). The sub-question is given in line 13, named ’q.question1’,
is not mandatory and has no optional questions or criteria that is required to be correctly
answered.

The example above shows a code for the creation of criteria. There are 2 criteria in
the above question (line 4 and 16). Each criteria has a name (criteria.question1 and crite-
ria.overall.handin) which are both mandatory (the attribute Mandatory is set to ’Y’). The
text of the criteria is given inside the CriteriaText element inside each CriteriaElement. The
student will never see the criteria when the student is taking the test. The grader will see
this on his/her screen:

“Criteria text 1. Grader Note: This part cannot be seen by the students but is used to
give additional info to the grader to help evaluating the criteria.
Pass Fail
Comment:

Criteria text 2.
Pass Fail
Comment:

”
When the bridge task is graded the student will see both the questions and the criteria

in his space. Anything inside the GraderNote element (line 7) is not shown to the student.
“Some test explanation

Criteria text 1
Pass
The actual test question
Criteria text 2.
Pass
Instructions to the student on submitting files
”

17.4.4 .Task Finishing Up

Once all questions are written, the file must be closed with the </Task> tag. The file must
be saved with a .task extension then placed into a LON CAPA author’s folder. To upload
the file simply go to the authoring space and simply upload the new file using the upload
new document button. Once the file is uploaded to LON CAPA, the author can publish the
file so that the domain coordinator will be able to use the file. To do this select publish (or
re-publish) in the select action combo box next to the filename.

The LON CAPA interface allows you to view the bridge task from different point of

17 BRIDGE TASK 134

views. You can see it from the student’s view, the grader view, or the student’s view after
feedback:

1. From the list of files authored, click on the bridge task that has just been created/edited.
A pull-down menu with the label “Problem Status” is located just above the question

2. Select “Answerable” to see the original view, “Criteria Grading” to see a grader view,
and “Show Feedback” to see the feedback view .To see the feedback view properly, you
must have graded the student with the grader view. Once you have graded using the
feedback view however, the answerable view will be similar to the feedback view.

3. To reset the view a “Reset Submissions” button is provided.

17.5 Bridge Task Edit Mode

Another way of creating Bridge Task is via the edit mode. The edit mode allows authors
to create resources (including Bridge Tasks) online. The basic idea of the this editor is the
author inserts and deletes different section types into the file to build the bridge task.

If a task file has already been created, click on the filename followed by the “Edit” button
to open the file in the colorful editor.

If a task file needs to be created:

1. Enter the filename in the area “Create a new directory or LON-CAPA document” with
the combo box at the left of this set to “New File” The filename must have a .task
extension.

2. At the second screen, press continue to create a new task. At the third screen, select
the blank task template and press the “Create task” button to create this blank task.

3. To go into the the edit mode, press the “Edit” Button.

The edit mode allows you to insert appropriate sections of a document at certain prede-
termined places. For example, in a bridge task document, you can insert a question section,
a criteria section, and an introductory section. To insert a section, find a drop down box
with the label “Insert”, and select the section to insert. Then click on the “Submit Changes
and Edit” button. The section you selected will be inserted in place of the pull down menu.

Additional insert pull-downs will show up allowing you to insert sections before, inside,
and after other sections. The choices on the pull down menu may differ depending on the
location of the insert pull-down. For example, the insert pull down inside a question section
contains question information; this option is not available anywhere else.

In the edit mode, you will see is an insert button and a optional task button. You
will need to enter the number of optional tasks/questions that the student need to answer
correctly to pass the bridge task. You can leave this field empty until after you have finished
writing the whole bridge task.

This document discusses important sections needed to create a bridge task. These sec-
tions can be created in any order.

1. The introductory and closing information 17.5.1

17 BRIDGE TASK 135

2. Variables 17.5.3

3. Question and criteria 17.5.2

Once the document has been created, the author must publish the bridge task so it
becomes available (See Edit Mode Finishing Up 17.5.4)

17.5.1 Introductions

The introductory information and closing information are just text that are shown to the
students but are not part of any questions. The introductory information should be placed
at the beginning of the bridge task and the closing information should be placed at the end
of the bridge task.

To insert these sections:

1. Select “Introductory Information” or “Closing Information” in the insert pull-down
menu and press the submit button.

2. A new section appears with a text box inside it. You may enter any text inside the
text box and the text may be formatted with HTML tags. Everything inside the text
box will be shown to the students as introductory or closing text.

17.5.2 Questions and Criteria

The task description should be divided into questions. Questions can also be divided into
sub-questions. A question or sub-question must have one or more criteria that are the scoring
rubrics used to evaluate that question. A task may also have a criteria. Graders use these
criteria to evaluate student work Both questions and criteria are interspersed within the task
description, placed where students see them when reviewing their graded bridge task.

Figure 33 shows a screenshot of the question creation page. To create a question:

1. Select “Question” in the main insert pull-down (circled as 1).

2. Press the submit changes and edit button.

3. In this question create a unique id which can be any kind of text (in circle 3).

4. Set whether a student must pass this question by setting the value of “Passing is
Mandatory” to “yes” (circle 4) or whether this question is optional by setting the
value to “no”.

5. Set the number of optional subquestions/criteria that the students must get correct in
order to pass this question. You can also wait until later to fill this in.

6. Create the question information by choosing Question information in the insert pull-
down (circled as 2) and pressing the submit button.

17 BRIDGE TASK 136

Figure 33: Bridge Task question creation screenshot

17 BRIDGE TASK 137

Figure 34: Bridge Task criteria creation screenshot

17 BRIDGE TASK 138

7. A text box should appear (circle 6) and you can insert any text in this text box.
Anything that is typed in this text box will appear to the student as part of the
question. HTML tags can also be used to format the text in the text box. Subquestions
can be added by inserting a new question (circle 2).

To add a criteria (see Figure 34):

1. Instead of choosing “Question” in the insert pull down, select “Question Criteria”
(circled as 1). Pressing the submit button will bring up the Question criteria as well
as the criteria information where you can write the criteria (Circled 3). The criteria is
shown to the student only when the student is reading his/her feedback. The criteria
is also shown to the grader in order for the grader to be able to grade the student
submission.

2. In the criteria block, first create a unique id for this criteria (any text) (circle 1).

3. Specify whether a criteria is mandatory or not, this is set in the Passing is mandatory
pull-down similar to that of the question (circle 2).

4. Text in the text block (circle 4) is shown as the criteria. The text can be formatted
with HTML.

5. You can also insert a grader note which will only be shown to the user. To do this
select “Text to display to grader” in the insert pull down menu of circle number 3.

17.5.3 Parameter and Variable

To create difference versions of Bridge Tasks for each student, parts of the questions are
defined using variables. Each variable contains multiple instances of possible values and
LON-CAPA randomly selects an instance to give to the student. Figure 35 shows a screenshot
of this process.

To create a variable:

1. Choose “Setup ...” in the insert pull-down menu (circled 1 in figure).

2. Press the Submit Changes and Edit just above the work space.

3. A new box should appear with the label “Setup ...”. In this box, fill out the id box
(circled 3) with any text that is unique to unique to the document. This id is the name
of the variable and will be used when creating the values for the variable.

4. The setup box has an insert pull-down menu next to the label (circled 2), select “Spe-
cific Question Instance” in this pull down menu, then again press the Submit Changes
and Edit button.

5. This creates one single instance of a set of possible values. For each instance created,
a new “Specific Question Instance” must be created.

17 BRIDGE TASK 139

Figure 35: Bridge Task variable creation screenshot

17 BRIDGE TASK 140

6. Right now a box should appear inside the “Setup... ” box with the label “Specific
Question Instance”. Insert a unique id for that instance which can be any unique text
(circled 4). This id is the instance name and is used as one of the property of the
variable.

7. In the question instance block, select “Information for the Instance” in the insert pull
down (circled 5). Again press submit button.

8. Add a new script (circled 6) in the insert pull down. A new text block should appear.

9. In this text box, a perl script will be created (circled 7). A set of parameters for this
variable is added. The syntax to set the parameter of a variable is ‘$variableName
{fieldname} = “fieldValue”’. The variable name is taken from the id field of the Setup
block, thefield name is the name of the parameter the author sets, and the fieldValue
is simply the value of the field. The first parameter that must be set is the instance
field, with the value being an identifier of the instance (which is the id of the specific
question instance block).

The example below shows two instances of this script for the variable entitySubject with
two instances, ’instanceHarry’ and ’instanceBetty’.

The first instance (instanceHarry) is:

$entitySubject{instance} = "instanceHarry";

$entitySubject{personname} = "Harry";

$entitySubject{place} = "zoo";

The second instance (instanceBetty) is:

$entitySubject{instance} = "instanceBetty";

$entitySubject{personname} = "Betty";

$entitySubject{place} = "park";

The example above describes a variable question. It has two different possible values
for the entity “subject”, Harry and zoo or Betty and park. Variables can be placed inside
the questions by using the variable name and field name. The example of the usage of this
variable inside the question is this text:

This is a test question. $entitySubject{personname} went to the $entitySubject{place}.
.

The LON-CAPA engine will replace any instance of $<variable name> (<property name>)
with the correct value, depending on the randomly chosen instance.

Based on this code, two different questions are possible:

1. This is a test question. Harry went to the zoo

2. This is a test question. Betty went to the park

17 BRIDGE TASK 141

17.5.4 Edit Mode Finishing Up

Once the construction is complete, click on the “Submit Changes and View” button. Click
on list to list the current author’s directory. The author should now publish the file so that
the domain coordinator will be able to use the file. To do this select publish (or re-publish)
in the select action combo box next to the filename.

The LON CAPA interface allows you to view the bridge task from different point of
views. You can see it from the student’s view, the grader view, or the student’s view after
feedback.

1. From the list of files authored, click on the bridge task that has just been created/edited.

2. A pull-down menu with the label “Problem Status” is located just above the question.
select “Answerable” to see the original view, “Criteria Grading” to see a grader view,
and “Show Feedback” to see the feedback view.

3. To see the feedback view properly, you must have graded the student with the grader
view.

4. Once you have graded using the feedback view however, the answerable view will
be similar to the feedback view. To reset the view a “Reset Submissions” button is
provided.

17.6 Setting Up a Bridge Task

The first step in making bridge tasks available to students is to include it in the document
space. To do this:

1. Enter the course coordinator space for the course

2. Go to “Course Documents” and click on import. This page gives the list of files that
you have created.

3. Select the bridge task and press import to insert the file to the list of documents.

4. After importing the document, you must re-initialize the course.

Now the assignment is in the list of documents, but it is not available for students. There
are two ways of making bridge tasks available to students. One method is by using slots (the
default method), which restrict the bridge task document to open at certain time/place only.
The other method allows students to take bridge task like any other Lon-CAPA assignments,
that is at any time they want within opening and closing dates. This method does not restrict
the access to particular computers or rooms. Any student in the course may open the BT.

If you want to use slots, first create the slots (See Bridge Task and Slots 17.6.1). Once
the BT is imported (and slots are created) go back to the document list and click on the
bridge task resource, this should take you to a page that shows the resource content. If you
are not using slots, click on the bridge task resource. Whether using or not using slots, click
on PPRM (a button on the top menu) to modify parameters for this resource.

17 BRIDGE TASK 142

Set the opening date and the due date (if any) in the for resource column. To do this,
click on the * in the in course for resource column. A pop up should appear. Enter the date
you want the resource to be available and click the store link.

If you are using slots:

1. Change the “Use slot based access controls” parameter to “Yes”.

2. Change the “Slots of availability” parameter for the course in for resource column to
the name of the slot that you created. You may need to change the input type (the
combo box at the top of the popup) to ’String Value’ instead of ’default’.

If you are not using slots:

1. Change the “Use slot based access controls” parameter to “no” by clicking on the * in
the for resource column

The bridge task should now be available to students. To see the BT in the student view,
switch to a student role in your course. Navigate contents and click on the resource.

17.6.1 Bridge Task and Slots

To restrict when and where BTs can be taken, the slots feature of LON-CAPA is used. Slots
allow the instructors to specify the room, the time, the students that can take the Bridge
Tasks, and finally any proctors that will authenticate the students.

17.6.2 Bridge Task and Conditional Resources

It is possible to configure bridge tasks such that only when a student passes a Bridge Task
does the next Bridge Task appear to the student. This feature is useful in such cases as
Bridge Tasks are related to one another, and the results of one Bridge Task is needed for the
next Bridge Task.

To create configure bridge tasks these way, a sequence page must be created. A resource
author starts at his/her authoring space (Main menu: AUTH). Once in the authoring space,
the author create a new assembled sequence. See the section 14 for a more concise reference
on condition and sequences.

The author must create various conditionals to determine which resources to show. The
easiest way to do this is by using advanced edit. The advanced edit visualizes the various
conditions and resources. This interface needs popups, so make sure popups are enabled in
the browser.

In the main starting view of the advanced edit, there are two squares, marked start and
end respectively. Start by creating a link between the start square and the end square. To
do this click on the start square (on the row under the text start), select “Link Resource”,
then click on the end square. A link is now created between the start and the end boxes.

Once a link is created the author adds resources and conditions. Click on the link and
then choose insert resource into link. This allows the placement of a resource such as a
bridge task into the sequence. Once the resource is placed into the link, the author should

17 BRIDGE TASK 143

create a mapalias. To do this, select the resource, then click on set parameters, and change
the value of Custom Parameter to an alias.

Under each square is an area of the same color as the square, these areas can be used to
create conditionals to get to the next resource to the sequence. This document only discusses
using conditionals to block access to the next resource (including Bridge Tasks).

Add conditionals by clicking on the area just under the squares. A popup window will
appear with a condition box and some options. The condition box allows the author to
enter a variety of different conditions. To block access to the next resource, select the second
option “Blocking this link if false”.

The conditions used will be :

&EXT(’user.resource.resource.0.awarded’,’<alias of resource>’) eq ’1’

<alias of resource> should be changed to the alias set for the previous resource that the
student needs to pass before the next resource is unblocked. If the student has not passed a
particular homework/problem/bridge task, the value of user.resource.resource.0.awarded is 0
otherwise the value is 1. This line checks whether the value of user.resource.resource.0.awarded
for that resource is equals to 1, if not the link is blocked and the next resources are not shown
to the user.

17.7 Handing In Bridge Task Files

After a student finishes creating the Bridge Task, the student must hand in the files. There
are many ways to do this, students can email the files necessary, or students can email a link
to the instructor that shows where his files are. LON-CAPA provides a way to upload file
using the portfolio. The portfolio is a space given to each student which can contain files
and is shareable.

The process of handing in files consists of:

1. Upload files into portfolio

2. Select the files to be submitted

3. Submit the files

At the end of every bridge task there will be a box to submit files in the portfolio for
grading. When the student click on the link “select portfolio files”, a new window is opened
showing the content of the student’s portfolio. The student can create directories in the
portfolio and upload files using the upload file buttons.

Once the files that are needed are uploaded, the student select (by checking the checkbox
next to the filenames) of all files that he needs to submit to the instructor. Once all files
needed are checked off, the student needs to press the “select checked files and close window”
button.

By pressing the close window button, the student’s portfolio window should close, and
the student should see his or her Bridge Task Page. The text field in the upload files into
portfolio should contain the list of names. The student must then press ’submit answer’ to
submit the answer to be graded.

18 WEBDAV ACCESS TO AUTHORING SPACE 144

If the student needs to resubmit the file, the student must repeat the process and check
off all the files (not only new files) that needs to be submitted. Once a file is submitted, the
student may not overwrite or delete the files.

18 WebDAV access to Authoring Space

If your domain has Apache with SSL running on the LON-CAPA server where you access
your Authoring Space (i.e., URLs begin https://) and your Domain Coordinator has enabled
webDAV access for users with author or co-author roles, then you will be able to connect to
an Authoring Space using webDAV.

A webDAV connection allows you to mount the Authoring Space directory tree as an
external volume. You can then use your own laptop/desktop computer’s file management
tools and applications to copy, move, edit and delete files (including dragging and dropping
folders, etc.).

The requirement to obsolete published files before moving or deleting them, which ap-
plies to the regular web browser-based management of Authoring Space, also applies in
the webDAV environment. Moving and deleting directories in the webDAV environment is
prohibited if the directory, or any (nested) subdirectory contains a non-obsolete published
resource.

Given the ability to easily delete unpublished content in webDAV (without a mechanism
to reverse the deletion), it is important that you are especially careful when working in the
webDAV environment with this type of content.

When you display the contents of a directory in Authoring Space using webDAV you may
see additional files, with extensions .log, .save, .bak etc. for each LON-CAPA .problem file.
You can view the contents of these files but you will not be able to modify or delete them.
These files are created by LON-CAPA when using the web GUI. For example, a .log file,
which records publication history, is updated whenever you use “Publish” to copy a file from
Authoring Space to Resource Space, and .bak files enable use of the LON-CAPA “Undo”
button in regular web browser-based editing in Authoring Space.

18 WEBDAV ACCESS TO AUTHORING SPACE 145

Figure 36: MacOS “Connect to Server”

Figure 37: MacOS WebDAV URL

Mac OS 10.9 (Mavericks) and earlier

1. Select the “Go” item in the Finder toolbar and select “Connect to Server”.

2. Enter a URL for a library server where the Authoring Space is located: e.g., https://
< hostname > /webdav/ <dom> / < username >/ where dom is the domain, and
username is the username of the Authoring Space owner.

3. You will be prompted to enter a username (this will be your LON-CAPA username if
you are the author, or your LON-CAPA username,domain if you are a co-author with
a domain different to that of the author) and your LON-CAPA password.

4. In the directory listing, you can use control + click for a particular file to choose an
application to use to open it (e.g., Text Wrangler for .problem files).

18 WEBDAV ACCESS TO AUTHORING SPACE 146

Figure 38: MacOS WebDAV Authentication

Figure 39: MacOS WebDAV Directory Listing

Figure 40: MacOS Editing a file accessed via WebDAV

18 WEBDAV ACCESS TO AUTHORING SPACE 147

Figure 41: MacOS 10.10 (Yosemite) ForkLift – Connect to WebDAV

Mac OS 10.10 (Yosemite)
The instructions provided for Mac OS 10.9 and earlier can also be used to mount the

Authoring Space if you are using 10.10. However, because of a change in the mechanism
used to save files, the Apple webDAV implementation in 10.10 will not allow saving of files
in Authoring Space if they have already been published to resource space. However, if you
purchase the inexpensive ForkLift 2 utility for Yosemite, you can continue to use the webDAV
to modify and save these types of files, when you use ForkLift to set up and manage your
webDAV connection.

1. Select the “Go” item in the ForkLift toolbar and select “Connect...”.

2. In the “Connect” dialog select “WebDAV (HTTPS)” as the protocol, and enter the
hostname of the server in the Server textbox, and your LON-CAPA username (LON-
CAPA username,domain if you are a co-author with a domain different to that of the
author), and password Click the “More options” arrow to display the Remote path
textbox, and enter webdav/ <dom> / < username >/, where dom is the domain, and
username is the username of the Authoring Space owner.

3. In the directory listing,

you can use control + click for a particular file to choose an application to use to open
it (e.g., Text Wrangler for .problem files).

18 WEBDAV ACCESS TO AUTHORING SPACE 148

Figure 42: MacOS 10.10 (Yosemite) ForkLift – WebDAV URL

18 WEBDAV ACCESS TO AUTHORING SPACE 149

Figure 43: MacOS 10.10 (Yosemite) ForkLift WebDAV Directory Listing

Figure 44: MacOS 10.10 (Yosemite) ForkLift – Editing a file accessed via WebDAV

18 WEBDAV ACCESS TO AUTHORING SPACE 150

Figure 45: Windows 7 Start Menu

Windows 7

1. Select ‘Computer” from the Start Menu.

2. Click on the “Map network drive” button in the toolbar.

3. In the pop-up window, enter the following in the Folder textbox: https:// < hostname
> /webdav/ <dom> / < username >/ and click the Finish button (where dom is the
domain, and username is the username of the Authoring Space owner).

4. In the “Windows Security” screen enter your LON-CAPA username (or LON-CAPA
username,domain and password if you are a co-author, and your domain is different to
that of the author), and password.

5. Display the directory listing to move or copy one or more files or folders, or open a
single file.

18 WEBDAV ACCESS TO AUTHORING SPACE 151

Figure 46: Windows 7 “Map network drive”

Figure 47: Windows 7 WebDAV URL

18 WEBDAV ACCESS TO AUTHORING SPACE 152

Figure 48: Windows 7 WebDAV Authentication

Figure 49: Windows 7 WebDAV Directory Listing

18 WEBDAV ACCESS TO AUTHORING SPACE 153

Figure 50: Linux (CentOS) Connect to Server

Linux (e.g., CentOS)

1. From the Places item in the toolbar, select “Connect to Server ...”.

2. In the dialog, select “Secure WebDAV (HTTPS)” as the service type, then enter the
hostname of the LON-CAPA library server in the Server textbox. In the Folder textbox
enter: webdav/ <dom> / < username >/ where dom is the domain, and username is
the username of the Authoring Space owner. Click the “Connect” button.

3. You will be prompted to enter a username (this will be your LON-CAPA username if
you are the author, or your LON-CAPA username,domain if you are a co-author with
a domain different to that of the author), and your LON-CAPA password.

4. Display the directory listing to move or copy one or more files or folders, or open a
single file.

18 WEBDAV ACCESS TO AUTHORING SPACE 154

Figure 51: Linux (CentOS) WebDAV URL

Figure 52: Linux (CentOS) WebDAV Authentication

18 WEBDAV ACCESS TO AUTHORING SPACE 155

Figure 53: Linux (CentOS) WebDAV Directory Listing

19 APPENDIX: SYMBOLS IN TEX 156

19 Appendix: Symbols in TeX

If you are viewing this online, copy and paste the text from any of the right columns into
your text area to get the Greek symbol on the left.

Symbol HTML character entities Copy this column
α α or α <m>α</m>

β β or β <m>β</m>

γ γ or γ <m>γ</m>

Γ Γ or Γ <m>Γ</m>

δ δ or δ <m>δ</m>

∆ Δ or Δ <m>Δ</m>

ǫ ε or ε <m>ϵ</m>

ε <m>ε</m>

ζ ζ or ζ <m>ζ</m>

η η or η <m>η</m>

θ θ or θ <m>θ</m>

ϑ ϑ or ϑ <m>ϑ</m>

Θ Θ or Θ <m>Θ</m>

ι ι or ι <m>ι</m>

κ κ or κ <m>κ</m>

λ λ or λ <m>λ</m>

Λ Λ or Λ <m>Λ</m>

µ μ or μ <m>μ</m>

ν ν or ν <m>ν</m>

ξ ξ or ξ <m>ξ</m>

Ξ Ξ or Ξ <m>Ξ</m>

π π or π <m>π</m>

̟ ϖ or ϖ <m>ϖ</m>

Π Π or Π <m>Π</m>

σ σ or σ <m>σ</m>

ς <m>ς</m>

Σ Σ or Σ <m>Σ</m>

τ τ or τ <m>τ</m>

υ υ or υ <m>υ</m>

Υ Υ or Υ <m>Υ</m>

φ φ or φ <m>ϕ</m>

ϕ <m>φ</m>

Φ Φ or Φ <m>Φ</m>

χ χ or χ <m>χ</m>

ψ Ψ or ψ <m>ψ</m>

Ψ Ψ or Ψ <m>Ψ</m>

ω ω or ω <m>ω</m>

Ω Ω or Ω <m>Ω</m>

ρ ρ or ρ <m>ρ</m>

̺ <m>ϱ</m>

20 APPENDIX: PHYSICAL UNITS 157

If you are viewing this online, copy and paste the text on any of the right columns into
your text area to get the symbol on the left.

Symbol HTML entity Copy this column
± ± or ± <m>\pm</m>

× × or × <m>\times</m>

÷ ÷ or ÷ <m>\div</m>

· · or · <m>\cdot</m>

⋆ <m>\star</m>

◦ ° or °
• • <m>\bullet</m>

† <m>\dag</m>

‡ <m>\ddag</m>

† † <m>\dagger</m>

‡ ‡ <m>\ddagger</m>

c© © or © <m>\copyright</m>

≤ ≤ or ≤ <m>\leq</m>

≥ ≥ or ≥ <m>\geq</m>

6= <m>\neq</m>

≪ <m>\ll</m>

≫ <m>\gg</m>

≃ <m>\simeq</m>

⊥ ⊥ or ⊥ <m>\perp</m>

‖ <m>\parallel</m>

← ← or ← <m>\leftarrow</m>

⇐ ⇐ or ⇐ <m>\Leftarrow</m>

→ → or → <m>\rightarrow</m>

⇒ ⇒ or ⇒ <m>\Rightarrow</m>

↑ ↑ or ↑ <m>\uparrow</m>

⇑ ⇑ or ⇑ <m>\Uparrow</m>

↔ ↔ or ↔ <m>\leftrightarrow</m>

⇔ ⇔ or ⇔ <m>\Leftrightarrow</m>√
√ or √ <m>\surd</m>

∂ ∂ or ∂ <m>∂</m>∑
∑ or ∑ <m>\sum</m>∫
∫ or ∫ <m>\int</m>

∞ ∞ or ∞ <m>∞</m>

20 Appendix: Physical Units

Physical Units Accepted by LON-CAPA

The following subsections show the physical units that LON-CAPA accepts. The symbols
must be used when entering the units, for example “35 kg”.

Note that compound units are formed by using *, / and ˆ. For example, an acceleration

20 APPENDIX: PHYSICAL UNITS 158

might be in terms of “m/sˆ2” or meters per second squared. This could also be expressed
as“m/s/s”. Units of Newton-meters (for torque) would be entered as “N*m”. Parentheses
may be used to guarantee the correct sense of the unit. Kilometers per Ampere-hour could
be written as “km/(A*hr)” or “km/A/hr” but not “km/A*hr”. The last option would be
interpreted as kilometer times hours per Ampere.

LON-CAPA will automatically perform some conversions between units of the same di-
mension when units are provided for a problem. You can provide an answer of “1.45 km”
for a distance. If the computer expects the answer in cm, it will convert your answer before
comparing against the numerical solution.

Please note that if your units are inappropriate, the computer has no way of checking
the appropriateness of your answer. If units are required, only once appropriate units are
provided will the system check your numerical answer.

Base Units

name symbol comment

meter m # length

kilogram kg # mass

second s # time

ampere A # electric current

kelvin K # thermodynamic temperature

mole mol # amount of substance

candela cd # luminous intensity

decibel dB # log of pressure amplitude

Prefixes

Prefix symbol factor

yotta Y 10^{24}

zetta Z 10^{21}

exa E 10^{18}

peta P 10^{15}

tera T 10^{12}

giga G 10^9

mega M 10^6

kilo k 10^3

hecto h 10^2

deca D 10^1

deci d 10^-1

centi c 10^-2

milli m 10^-3

micro u 10^-6

20 APPENDIX: PHYSICAL UNITS 159

nano n 10^-9

pico p 10^{-12}

femto f 10^{-15}

atto a 10^{-18}

zepto z 10^{-21}

yocto y 10^{-24}

Derived Units

Derived Unit

name symbol comment

gram g # mass

minute min # time

hour hr # time

hour h # time

day day # time

day days # time

year yr # time

pound lb # mass

ounce oz # mass

inch in # length

foot ft # length

mile mi # length

yard yd # length

nautical_mile n_mi # length, nautical mile (UK)

rood rood # area, rood

acre acre # area, acre

hertz Hz # frequency

litre L # volume

newton N # force

pound_force lbf # force

dyne dyn # force

pascal Pa # pressure, stress

bar bar # pressure

mmHg mmHg # pressure, millimeter of mercury

torr torr # pressure

atm atm # standard atmosphere

joule J # energy, work, heat

electronvolt eV # energy

calorie cal # energy

Btu Btu # energy

watt W # power, radiant flux

coulomb C # electric charge

volt V # electric potential, electromotive force

20 APPENDIX: PHYSICAL UNITS 160

ohm ohm # electric resistance, use this in /ANS

ohm ohms # electric resistance

ohm Ohm # electric resistance

ohm Ohms # electric resistance

mho mho # electric conductance

mho mhos # electric conductance

mho Mho # electric conductance

mho Mhos # electric conductance

siemens S # electric conductance

farad F # electric capacitance

tesla T # magnetic flux density

weber Wb # magnetic flux

henry H # inductance

radian rad # plane angle

degree deg # plane angle (Pi rad=180 deg)

steradian sr # solid angle

lumen lm # luminous flux

lux lx # illuminance

becquerel Bq # activity (radioactive)

curie Ci # activity (radioactive)

gray Gy # absorbed dose (of radiation)

sievert Sv # dose equivalent (dose equivalent index)

astroUnit AU # mean distance earth to sun

celcius degC # multiplicatively OK

fahrenheit degF # multiplicatively OK

molarity M # chemisty

amu amu # atomic mass unit

amu u # atomic mass unit

lightspeed c # speed of light

cubiccentimeter cc # cubic centimeter

electroncharge e # elementary charge

hbar hbar # Planck constant

milesperhour mph # miles per hour

rpm rpm # rounds per minute

rpm rpms # rounds per minute

parsec pc # parsec

Interpretation

The coded units are interpreted in the order of basic unit, derived unit, then prefix. For
example, “T” will be matched against “tesla” instead of considered the prefix “T”. Another
example is that “min” will match “minutes” instead of treated as a combination of the prefix
“m” and units.

Index

*response, 70
.css, 10
.htm, .html, xhtm, xhtml, 10
.page, 11
.problem, 11
.sequence, 12
&EXT, 70, 120

absolute tolerance, 37
adaptive hints, 71
algebra, 101
answer, 96, 98
answer display, 29
awarddetail, 99

bgimg, 106
block, 108
browsing resources, 17
bugs, 18
Bugzilla, 18

cascading style sheet, 10
chem, 101
Clair de Lune, 21
colorful editor, 25
comment, 109
comment markers, 7
concept groups, 19
conceptgroup, 100
conditional hints, 71
content page, 10, 19
css, 10
Custom Response, 22, 50
customhint, 101

default, 99
description, 100, 107
display, 98, 107
displayduedate, 103
displaytitle, 104
dynamic plot, 28, 52

endouttext, 109

equations, 23, 105
eval=on, 105

foil, 19, 100
foilgroup, 100
form, 98
format algebra, 101
format number, 102
format numbers in text block, 42
format reaction, 101
Formula Response, 21, 43
formulahint, 100
Function Plot Response, 22, 60

gnuplot, 52
Greek symbols, 23

height, 106
help, 17
help icon, 17
hintgroup, 100
hintpart, 100
hints, 71
HTML file, 10, 19
HTML page, 22

id, 99
image, 97
imageresponse, 97
import, 68, 108

label, 107
labelgroup, 107
Latex, 23
library, 68
listserv, 18
location, 107
LON-CAPA listserv, 18
loncapagrade, 99

m, 105
map, 11, 12
math equations, 23
Math Response, 22, 48

161

INDEX 162

message, 99
Metadata, 79

name, 98, 99, 107
notsolved, 29, 108
num, 102
num output tag, 42
Numerical Response, 21, 36
numericalhint, 100
numericalresponse, 96

Option Response, 19, 33
optionhint, 100
optionresponse, 97
output tags, 23

page, 11
parse, 102
parserlib, 108
part, 109
picture, 27
plot, 52
plots, 28
postanswerdate, 29, 48, 108
preduedate, 29, 108
problem, 11, 108
problemtype, 107
Publishing Resource, 80

Radio Response, 19, 30
radiobuttonhint, 100
radiobuttonresponse, 98
random permutation, 68
randomizing parts, 69, 108
randomlabel, 106
randomlist, 69, 108
rectangle, 97
relative tolerance, 37
relative tolerance, in formula response, 47
Reset Submissions, 26
Resource, Publishing, 80

Sample Points, 46
script, 40, 108
script variables, viewing, 70
scriptlib, 108

search repository, advanced, 16
search repository, basic, 15
Sequence, 88
sequence, 12
solved, 29, 108
spelling checker, 23
standalone, 103
startouttext, 109
statement, 40
String Response, 21, 35
stringhint, 100
strings, 41
suggestions, 18
surveys, 27
symbols, html, 23

tex, 23
text, 97
textfield, 101
textline, 101
texwidth, 106
togglebox, 105
tolerance, 37
tolerance, absolute, 37
tolerance, in formula response, 47
tolerance, relative, 37
type, 98, 99, 107

unit, 96
url, 98

value, 107
variables in text block, 41

while, 108
width, 106
window, 104
windowlink, 104

x, 107
XML editor, 26

y, 107

